GK
Gregory Kiar
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(77% Open Access)
Cited by:
48
h-index:
17
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
32

Evaluating the reliability of human brain white matter tractometry

John Kruper et al.Feb 24, 2021
+10
A
J
J
The validity of research results depends on the reliability of analysis methods. In recent years, there have been concerns about the validity of research that uses diffusion-weighted MRI (dMRI) to understand human brain white matter connections in vivo , in part based on reliability of the analysis methods used in this field. We defined and assessed three dimensions of reliability in dMRI-based tractometry, an analysis technique that assesses the physical properties of white matter pathways: (1) reproducibility, (2) test-retest reliability and (3) robustness. To facilitate reproducibility, we provide software that automates tractometry ( https://yeatmanlab.github.io/pyAFQ ). In measurements from the Human Connectome Project, as well as clinical-grade measurements, we find that tractometry has high test-retest reliability that is comparable to most standardized clinical assessment tools. We find that tractometry is also robust: showing high reliability with different choices of analysis algorithms. Taken together, our results suggest that tractometry is a reliable approach to analysis of white matter connections. The overall approach taken here both demonstrates the specific trustworthiness of tractometry analysis and outlines what researchers can do to demonstrate the reliability of computational analysis pipelines in neuroimaging.
32
Citation18
0
Save
0

Eliminating accidental deviations to minimize generalization error and maximize replicability: applications in connectomics and genomics

Eric Bridgeford et al.Oct 13, 2019
+14
C
J
E
Abstract Replicability, the ability to replicate scientific findings, is a prerequisite for scientific discovery and clinical utility. Troublingly, we are in the midst of a replicability crisis. A key to replicability is that multiple measurements of the same item (e.g., experimental sample or clinical participant) under fixed experimental constraints are relatively similar to one another. Thus, statistics that quantify the relative contributions of accidental deviations—such as measurement error—as compared to systematic deviations—such as individual differences—are critical. We demonstrate that existing replicability statistics, such as intra-class correlation coefficient and fingerprinting, fail to adequately differentiate between accidental and systematic deviations in very simple settings. We therefore propose a novel statistic, discriminability , which quantifies the degree to which an individual’s samples are relatively similar to one another, without restricting the data to be univariate, Gaussian, or even Euclidean. Using this statistic, we introduce the possibility of optimizing experimental design via increasing discriminability and prove that optimizing discriminability improves performance bounds in subsequent inference tasks. In extensive simulated and real datasets (focusing on brain imaging and demonstrating on genomics), only optimizing data discriminability improves performance on all subsequent inference tasks for each dataset. We therefore suggest that designing experiments and analyses to optimize discriminability may be a crucial step in solving the replicability crisis, and more generally, mitigating accidental measurement error. Author Summary In recent decades, the size and complexity of data has grown exponentially. Unfortunately, the increased scale of modern datasets brings many new challenges. At present, we are in the midst of a replicability crisis, in which scientific discoveries fail to replicate to new datasets. Difficulties in the measurement procedure and measurement processing pipelines coupled with the influx of complex high-resolution measurements, we believe, are at the core of the replicability crisis. If measurements themselves are not replicable, what hope can we have that we will be able to use the measurements for replicable scientific findings? We introduce the “discriminability” statistic, which quantifies how discriminable measurements are from one another, without limitations on the structure of the underlying measurements. We prove that discriminable strategies tend to be strategies which provide better accuracy on downstream scientific questions. We demonstrate the utility of discriminability over competing approaches in this context on two disparate datasets from both neuroimaging and genomics. Together, we believe these results suggest the value of designing experimental protocols and analysis procedures which optimize the discriminability.
46

Numerical Uncertainty in Analytical Pipelines Lead to Impactful Variability in Brain Networks

Gregory Kiar et al.Oct 15, 2020
+7
P
Y
G
Abstract The analysis of brain-imaging data requires complex processing pipelines to support findings on brain function or pathologies. Recent work has shown that variability in analytical decisions, small amounts of noise, or computational environments can lead to substantial differences in the results, endangering the trust in conclusions 1-7 . We explored the instability of results by instrumenting a connectome estimation pipeline with Monte Carlo Arithmetic 8,9 to introduce random noise throughout. We evaluated the reliability of the connectomes, their features 10,11 , and the impact on analysis 12,13 . The stability of results was found to range from perfectly stable to highly unstable. This paper highlights the potential of leveraging induced variance in estimates of brain connectivity to reduce the bias in networks alongside increasing the robustness of their applications in the classification of individual differences. We demonstrate that stability evaluations are necessary for understanding error inherent to brain imaging experiments, and how numerical analysis can be applied to typical analytical workflows both in brain imaging and other domains of computational science. Overall, while the extreme variability in results due to analytical instabilities could severely hamper our understanding of brain organization, it also leads to an increase in the reliability of datasets.
1

When no answer is better than a wrong answer: a causal perspective on batch effects

Eric Bridgeford et al.Sep 6, 2021
+8
G
M
E
Abstract Batch effects, undesirable sources of variability across multiple experiments, present significant challenges for scientific and clinical discoveries. Batch effects can (i) produce spurious signals and/or (ii) obscure genuine signals, contributing to the ongoing reproducibility crisis. Because batch effects are typically modeled as classical statistical effects, they often cannot differentiate between sources of variability, which leads them to erroneously conclude batch effects are present (or not). We formalize batch effects as causal effects, and introduce algorithms leveraging causal machinery, to address these concerns. Simulations illustrate that when non-causal methods provide the wrong answer, our methods either produce more accurate answers or “no answer”, meaning they assert the data are an inadequate to confidently conclude on the presence of a batch effect. Applying our causal methods to a 27 neuroimaging datasets yields qualitatively similar results: in situations where it is unclear whether batch effects are present, non-causal methods confidently identify (or fail to identify) batch effects, whereas our causal methods assert that it is unclear whether there are batch effects or not. This work therefore provides a causal framework for understanding the potential capabilities and limitations of analysis of multi-site data.
1

A Guide for Quantifying and Optimizing Measurement Reliability for the Study of Individual Differences

Ting Xu et al.Jan 28, 2022
+3
E
G
T
Abstract Characterizing individual variations is central to interpreting individual differences in neuroscience and clinical studies. While the field has examined multifaceted individual differences in brain functional organization, it is only in recent years that neuroimaging researchers have begun to place a priority on its quantification and optimization. Here, we highlight a potential analytic pitfall that can lead to contaminated estimates of inter-individual differences. We define a two-dimensional individual variation field map to decipher sources of individual variation and their relation to fingerprinting and measures of reliability. We illustrate theoretical gradient flow that represents the most effective direction for optimization when measuring individual differences. We propose to use this general framework for dissecting within- and between-individual variation and provide a supporting online tool for the purposes of guiding optimization efforts in biomarker discovery.
6

A low-resource reliable pipeline to democratize multi-modal connectome estimation and analysis

Jaewon Chung et al.Nov 3, 2021
+17
D
A
J
Abstract Connectomics—the study of brain networks—provides a unique and valuable opportunity to study the brain. Research in human connectomics, leveraging functional and diffusion Magnetic Resonance Imaging (MRI), is a resource-intensive practice. Typical analysis routines require significant computational capabilities and subject matter expertise. Establishing a pipeline that is low-resource, easy to use, and off-the-shelf (can be applied across multifarious datasets without parameter tuning to reliably estimate plausible connectomes), would significantly lower the barrier to entry into connectomics, thereby democratizing the field by empowering a more diverse and inclusive community of connectomists. We therefore introduce ‘MRI to Graphs’ ( m2g ). To illustrate its properties, we used m2g to process MRI data from 35 different studies (≈ 6,000 scans) from 15 sites without any manual intervention or parameter tuning. Every single scan yielded an estimated connectome that adhered to established properties, such as stronger ipsilateral than contralateral connections in structural connectomes, and stronger homotopic than heterotopic correlations in functional connectomes. Moreover, the connectomes estimated by m2g are more similar within individuals than between them, suggesting that m2g preserves biological variability. m2g is portable, and can run on a single CPU with 16 GB of RAM in less than a couple hours, or be deployed on the cloud using its docker container. All code is available on https://github.com/neurodata/m2g and documentation is available on docs.neurodata.io/m2g.
18

Data Augmentation Through Monte Carlo Arithmetic Leads to More Generalizable Classification in Connectomics

Gregory Kiar et al.Dec 16, 2020
+2
A
Y
G
Machine learning models are commonly applied to human brain imaging datasets in an effort to associate function or structure with behaviour, health, or other individual phenotypes. Such models often rely on low-dimensional maps generated by complex processing pipelines. However, the numerical instabilities inherent to pipelines limit the fidelity of these maps and introduce computational bias. Monte Carlo Arithmetic, a technique for introducing controlled amounts of numerical noise, was used to perturb a structural connectome estimation pipeline, ultimately producing a range of plausible networks for each sample. The variability in the perturbed networks was captured in an augmented dataset, which was then used for an age classification task. We found that resampling brain networks across a series of such numerically perturbed outcomes led to improved performance in all tested classifiers, preprocessing strategies, and dimensionality reduction techniques. Importantly, we find that this benefit does not hinge on a large number of perturbations, suggesting that even minimally perturbing a dataset adds meaningful variance which can be captured in the subsequently designed models. GRAPHICAL ABSTRACT This paper demonstrates how Monte Carlo Arithmetic, a dataagnostic perturbation technique, can be used for dataset augmentation during the generation of structural connectomes and improve downstream phenotypic prediction.
0

Moving beyond processing- and analysis-related variation in resting-state functional brain imaging

Xinhui Li et al.Aug 5, 2024
+17
L
N
X
64

Functional Connectivity Development along the Sensorimotor-Association Axis Enhances the Cortical Hierarchy

Audrey Luo et al.Jul 25, 2023
+23
A
V
A
ABSTRACT Human cortical maturation has been posited to be organized along the sensorimotor-association (S-A) axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the S-A axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3,355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1,207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1,126). In each dataset, the development of functional connectivity systematically varied along the S-A axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These robust and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.
0

BIDS Apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods

Krzysztof Gorgolewski et al.Oct 4, 2016
+26
P
T
K
The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). The portability of these applications (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the richness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms.
Load More