KW
Konrad Wagstyl
Author with expertise in Analysis of Brain Functional Connectivity Networks
Wellcome Centre for Human Neuroimaging, University College London, National Hospital for Neurology and Neurosurgery
+ 12 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
21
(81% Open Access)
Cited by:
53
h-index:
25
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transcriptomic and Cellular Decoding of Regional Brain Vulnerability to Neurodevelopmental Disorders

Jakob Seidlitz et al.May 6, 2020
+19
S
A
J
Abstract Neurodevelopmental disorders are highly heritable and associated with spatially-selective disruptions of brain anatomy. The logic that translates genetic risks into spatially patterned brain vulnerabilities remains unclear but is a fundamental question in disease pathogenesis. Here, we approach this question by integrating (i) in vivo neuroimaging data from patient subgroups with known causal genomic copy number variations (CNVs), and (ii) bulk and single-cell gene expression data from healthy cortex. First, for each of six different CNV disorders, we show that spatial patterns of cortical anatomy change in youth are correlated with spatial patterns of expression for CNV region genes in bulk cortical tissue from typically-developing adults. Next, by transforming normative bulk-tissue cortical expression data into cell-type expression maps, we further link each disorder’s anatomical change map to specific cell classes and specific CNV-region genes that these cells express. Finally, we establish convergent validity of this “transcriptional vulnerability model” by inter-relating patient neuroimaging data with measures of altered gene expression in both brain and blood-derived patient tissue. Our work clarifies general biological principles that govern the mapping of genetic risks onto regional brain disruption in neurodevelopmental disorders. We present new methods that can harness these principles to screen for potential cellular and molecular determinants of disease from readily available patient neuroimaging data.
0
Citation21
0
Save
48

LayNii: A software suite for layer-fMRI

Laurentius Huber et al.Oct 24, 2023
+12
P
B
L
Abstract High-resolution fMRI in the sub-millimeter regime allows researchers to resolve brain activity across cortical layers and columns non-invasively. While these high-resolution data make it possible to address novel questions of directional information flow within and across brain circuits, the corresponding data analyses are challenged by MRI artifacts, including image blurring, image distortions, low SNR, and restricted coverage. These challenges often result in insufficient spatial accuracy of conventional analysis pipelines. Here we introduce a new software suite that is specifically designed for layer-specific functional MRI: LayNii. This toolbox is a collection of command-line executable programs written in C/C++ and is distributed open-source and as pre-compiled binaries for Linux, Windows, and macOS. LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints and thus cannot be straightforwardly analyzed in alternative software packages. Some of the most popular programs of LayNii contain ‘layerification’ and columnarization in the native voxel space of functional data as well as many other layer-fMRI specific analysis tasks: layer-specific smoothing, model-based vein mitigation of GE-BOLD data, quality assessment of artifact dominated sub-millimeter fMRI, as well as analyses of VASO data. Highlights A new software toolbox is introduced for layer-specific functional MRI: LayNii. LayNii is a suite of command-line executable C++ programs for Linux, Windows, and macOS. LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints. LayNii performs layerification in the native voxel space of functional data. LayNii performs layer-smoothing, GE-BOLD deveining, QA, and VASO analysis. Abstract Figure Graphical abstract
0

BigBrain 3D atlas of cortical layers: cortical and laminar thickness gradients diverge in sensory and motor cortices

Konrad Wagstyl et al.May 6, 2020
+14
G
S
K
Abstract Histological atlases of the cerebral cortex, such as those made famous by Brodmann and von Economo, are invaluable for understanding human brain microstructure and its relationship with functional organization in the brain. However, these existing atlases are limited to small numbers of manually annotated samples from a single cerebral hemisphere, measured from 2D histological sections. We present the first whole-brain quantitative 3D laminar atlas of the human cerebral cortex. This atlas was derived from a 3D histological model of the human brain at 20 micron isotropic resolution (BigBrain), using a convolutional neural network to segment, automatically, the cortical layers in both hemispheres. Our approach overcomes many of the historical challenges with measurement of histological thickness in 2D and the resultant laminar atlas provides an unprecedented level of precision and detail. We utilized this BigBrain cortical atlas to test whether previously reported thickness gradients, as measured by MRI in sensory and motor processing cortices, were present in a histological atlas of cortical thickness, and which cortical layers were contributing to these gradients. Cortical thickness increased across sensory processing hierarchies, primarily driven by layers III, V and VI. In contrast, fronto-motor cortices showed the opposite pattern, with decreases in total and pyramidal layer thickness. These findings illustrate how this laminar atlas will provide a link between single-neuron morphology, mesoscale cortical layering, macroscopic cortical thickness and, ultimately, functional neuroanatomy.
0

Microstructural and Functional Gradients are Increasingly Dissociated in Transmodal Cortices

Casey Paquola et al.May 7, 2020
+9
K
R
C
Summary While the role of cortical microstructure in organising neural function is well established, it remains unclear how structural constraints can give rise to more flexible elements of cognition. While non-human primate research has demonstrated a close structure-function correspondence, the relationship between microstructure and function remains poorly understood in humans, in part because of the reliance on post mortem analyses which cannot be directly related to functional data. To overcome this barrier, we developed a novel approach to model the similarity of microstructural profiles sampled in the direction of cortical columns. Our approach was initially formulated based on an ultra-high-resolution 3D histological reconstruction of an entire human brain and then translated to myelin-sensitive MRI data in a large cohort of healthy adults. This novel method identified a system-level gradient of microstructural differentiation traversing from primary sensory to limbic regions that followed shifts in laminar differentiation and cytoarchitectural complexity. Importantly, while microstructural and functional gradients described a similar hierarchy, they became increasingly dissociated in transmodal default mode and fronto-parietal networks. Meta analytic decoding of these topographic dissociations highlighted involvement in higher-level aspects of cognition such as cognitive control and social cognition. Our findings demonstrate a relative decoupling of macroscale functional from microstructural gradients in transmodal regions, which likely contributes to the flexible role these regions play in human cognition.
0
Citation5
0
Save
62

Three components of human brain gene expression reflect normative developmental programmes with specific links to neurodevelopmental disorders

Richard Dear et al.Oct 24, 2023
+7
J
K
R
Abstract Human brain organisation emerges from the coordinated transcription of thousands of genes, and the first principal component (C1) of spatial whole genome expression was shown to reflect cortical hierarchy. Here, optimised processing of the Allen Human Brain Atlas revealed two new components of brain transcription, C2 and C3, which were distinctively enriched for neuronal, metabolic and immune processes, cell-types and cytoarchitecture, and genetic variants associated with intelligence. Using additional datasets (PsychENCODE, Allen Cell Atlas, and BrainSpan), we found that C1-C3 represent generalisable transcriptional programmes that are coordinated within cells, and differentially phased during foetal and postnatal development. Autism spectrum disorder and schizophrenia were specifically associated with C1/C2 and C3, respectively, across neuroimaging, gene expression, and genome-wide association studies. Evidence converged especially in support of C3 as a normative transcriptional programme for adolescent brain development, which can lead to atypical supragranular brain connectivity in people at high genetic risk for schizophrenia.
62
Citation4
0
Save
38

BigBrainWarp: Toolbox for integration of BigBrain 3D histology with multimodal neuroimaging

Casey Paquola et al.Oct 24, 2023
+12
L
J
C
A bstract Neuroimaging stands to benefit from emerging ultrahigh-resolution histological atlases of the human brain; the first of which is “BigBrain”. Ongoing research aims to characterise regional differentiation of cytoarchitecture with BigBrain and to optimise registration of BigBrain with standard neuroimaging templates. Together, this work paves the way for multi-scale investigations of brain organisation. However, working with BigBrain can present new challenges for neuroimagers, including dealing with cellular resolution neuroanatomy and complex transformation procedures. To simplify workflows and support adoption of best practices, we developed BigBrainWarp, a toolbox for integration of BigBrain with multimodal neuroimaging. The primary BigBrainWarp function wraps multiple state-of-the-art deformation matrices into one line of code, allowing users to easily map data between BigBrain and standard MRI spaces. Additionally, the toolbox contains ready-to-use cytoarchitectural features to improve accessibility of histological information. The present article discusses recent contributions to BigBrain-MRI integration and demonstrates the utility of BigBrainWarp for further investigations.
38
Paper
Citation2
0
Save
49

Mesoscopic in vivo human T2* dataset acquired using quantitative MRI at 7 Tesla

Omer Gulban et al.Oct 24, 2023
+5
L
S
O
A bstract Mesoscopic (0.1-0.5 mm) interrogation of the living human brain is critical for advancing neuroscience and bridging the resolution gap with animal models. Despite the variety of MRI contrasts measured in recent years at the mesoscopic scale, in vivo quantitative imaging of T 2 * has not been performed. Here we provide a dataset containing empirical T 2 * measurements acquired at 0.35 × 0.35 × 0.35 mm 3 voxel resolution using 7 Tesla MRI. To demonstrate unique features and high quality of this dataset, we generate flat map visualizations that reveal fine-scale cortical substructures such as layers and vessels, and we report quantitative depth-dependent T 2 * (as well as R 2 *) values in primary visual cortex and auditory cortex that are highly consistent across subjects. This dataset is freely available at https://doi.org/10.17605/OSF.IO/N5BJ7 , and may prove useful for anatomical investigations of the human brain, as well as for improving our understanding of the basis of the T 2 * -weighted (f)MRI signal.
0

Deciphering the functional specialization of whole-brain spatiomolecular gradients in the adult brain

Jacob Vogel et al.Sep 11, 2024
+11
K
A
J
Cortical arealization arises during neurodevelopment from the confluence of molecular gradients representing patterned expression of morphogens and transcription factors. However, whether similar gradients are maintained in the adult brain remains unknown. Here, we uncover three axes of topographic variation in gene expression in the adult human brain that specifically capture previously identified rostral-caudal, dorsal-ventral, and medial-lateral axes of early developmental patterning. The interaction of these spatiomolecular gradients i) accurately reconstructs the position of brain tissue samples, ii) delineates known functional territories, and iii) can model the topographical variation of diverse cortical features. The spatiomolecular gradients are distinct from canonical cortical axes differentiating the primary sensory cortex from the association cortex, but radiate in parallel with the axes traversed by local field potentials along the cortex. We replicate all three molecular gradients in three independent human datasets as well as two nonhuman primate datasets and find that each gradient shows a distinct developmental trajectory across the lifespan. The gradients are composed of several well-known transcription factors (e.g., PAX6 and SIX3 ), and a small set of genes shared across gradients are strongly enriched for multiple diseases. Together, these results provide insight into the developmental sculpting of functionally distinct brain regions, governed by three robust transcriptomic axes embedded within brain parenchyma.
0
Paper
Citation1
0
Save
0

CIVET-Macaque: an automated pipeline for MRI-based cortical surface generation and cortical thickness in macaques

Claude Lepage et al.Jun 5, 2024
+6
B
K
C
Abstract The MNI CIVET pipeline for automated extraction of cortical surfaces and evaluation of cortical thickness from in-vivo human MRI has been extended for processing macaque brains. Processing is performed based on the NIMH Macaque Template (NMT), as the reference template, with the anatomical parcellation of the surface following the D99 and CHARM atlases. The modifications needed to adapt CIVET to the macaque brain are detailed. Results have been obtained using CIVET-macaque to process the anatomical scans of the 31 macaques used to generate the NMT and another 95 macaques from the PRIME-DE initiative. It is anticipated that the open usage of CIVET-macaque will promote collaborative efforts in data collection and processing, sharing, and automated analyses from which the non-human primate brain imaging field will advance.
0
Paper
Citation1
0
Save
39

The spatial arrangement of laminar thickness profiles in the human cortex scaffolds processing hierarchy

Amin Saberi et al.Oct 24, 2023
+4
K
C
A
Abstract The human neocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support brain function through enabling targeted corticocortical connections. Here, leveraging maps of the six cortical layers in 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with comparable laminar thickness patterns correspond to inter-regional structural covariance, maturational coupling, and transcriptomic patterning, indicating developmental relevance. In sum, here we characterize the association between organization of laminar thickness and processing hierarchy, anchored in ontogeny. As such, we illustrate how laminar organization may provide a foundational principle ultimately supporting human cognitive functioning.
Load More