SR
Soumya Remesh
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
59
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
49

CryoEM and AI reveal a structure of SARS-CoV-2 Nsp2, a multifunctional protein involved in key host processes

Meghna Gupta et al.May 12, 2021
+81
A
Y
M
Abstract The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.
49
Citation57
0
Save
12

Targeting a proteolytic neo-epitope of CUB-domain containing protein 1 in RAS-driven cancer

Shion Lim et al.Jun 15, 2021
+12
J
J
S
Abstract A central challenge for any therapeutic is targeting diseased over normal cells. Proteolysis is frequently upregulated in disease and can generate proteoforms with unique neo-epitopes. We hypothesize that targeting proteolytic neo-epitopes can enable more effective and safer treatments, reflecting a conditional layer of disease-specific regulation. Here, we characterized the precise proteolytic isoforms of CUB domain containing protein 1 (CDCP1), a protein overexpressed and specifically cleaved in RAS-driven cancers. We validated that the N-terminal and C-terminal fragments of CDCP1 remain associated after proteolysis in vitro and on the surface of pancreatic cancer cells. Using a differential phage display strategy, we generated exquisitely selective recombinant antibodies that target cells harboring cleaved CDCP1 and not the full-length form using antibody-drug conjugates or a bi-specific T-cell engagers. We show tumor-specific localization and anti-tumor activity in a syngeneic pancreatic tumor model having superior safety profiles compared to a pan-CDCP1-targeting antibody. Our studies show proteolytic neo-epitopes can provide an orthogonal “AND” gate for disease-specific targeting. One-Sentence Summary Antibody-based targeting of neo-epitopes generated by disease-associated proteolysis improves the therapeutic index
12
Citation2
0
Save
3

Computational pipeline provides mechanistic understanding of Omicron variant of concern neutralizing engineered ACE2 receptor traps

Soumya Remesh et al.Aug 10, 2022
+23
A
Y
S
The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-Spike-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with full length Spike. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high affinity (0.53 - 4.2nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron- and Delta-pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.