JP
J.H. Pereira
Author with expertise in Macromolecular Crystallography Techniques
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(56% Open Access)
Cited by:
4,184
h-index:
32
/
i10-index:
58
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An iron (II) dependent oxygenase performs the last missing step of plant lysine catabolism

Mitchell Thompson et al.Jan 31, 2020
Due to low abundance in many staple food crops, the essential amino acid lysine must be produced industrially to meet global food supply needs. Despite intensive study, manipulation, and agricultural importance, the steps of plant lysine catabolism beyond the 2-oxoadipate (2OA) intermediate remain undescribed. Recently we described a missing step in the D-lysine catabolic pathway of the bacterium Pseudomonas putida in which 2OA is converted to D-2-hydroxyglutarate (D2HG) via hydroxyglutarate synthase (HglS), an enzyme belonging to the previously uncharacterized DUF1338 protein family. Here we solve the structure of HglS to 1.1 angstrom resolution in the substrate-free form and in complex with 2OA. Structural similarity to hydroxymandelate synthase suggested a successive decarboxylation and intramolecular hydroxylation mechanism forming 2HG in a Fe(II)- and O2-dependent manner, which is validated experimentally. 2OA specificity was mediated by a single arginine (R74), highly conserved across nearly all DUF1338 family proteins, including in 76% of plant enzymes. In Arabidopsis thaliana, a DUF1338 homolog is coexpressed with known lysine catabolism enzymes, and mutants show significant germination rate defects consistent with disrupted lysine catabolism. Structural and biochemical analysis of the Oryza sativa homolog FLO7 revealed identical activity to HglS despite low sequence identity. Our results suggest that nearly all DUF1338 containing enzymes likely catalyze the same biochemical reaction, exerting the same physiological function across bacteria and eukaryotes.
0

Structural and biochemical basis for regiospecificity of the flavonoid glycosyltransferase UGT95A1

Sasilada Sirirungruang et al.Jul 1, 2024
Glycosylation is a predominant strategy plants employ to fine-tune the properties of small molecule metabolites to affect their bioactivity, transport, and storage. It is also important in biotechnology and medicine as many glycosides are utilized in human health. Small molecule glycosylation is largely carried out by family 1 glycosyltransferases. Here, we report a structural and biochemical investigation of UGT95A1, a family 1 GT enzyme from Pilosella officinarum that exhibits a strong, unusual regiospecificity for the 3'-O position of flavonoid acceptor substrate luteolin. We obtained an apo crystal structure to help drive the analyses of a series of binding site mutants, revealing that while most residues are tolerant to mutations, key residues M145 and D464 are important for overall glycosylation activity. Interestingly, E347 is crucial for maintaining the strong preference for 3'-O glycosylation, while R462 can be mutated to increase regioselectivity. The structural determinants of regioselectivity were further confirmed in homologous enzymes. Our study also suggests that the enzyme contains large, highly dynamic, disordered regions. We showed that while most disordered regions of the protein have little to no implication in catalysis, the disordered regions conserved among investigated homologues are important to both the overall efficiency and regiospecificity of the enzyme. This report represents a comprehensive in-depth analysis of a family 1 GT enzyme with a unique substrate regiospecificity and may provide a basis for enzyme functional prediction and engineering.
0

Structural mechanism of regioselectivity in an unusual bacterial acyl-CoA dehydrogenase

Jacquelyn Blake-Hedges et al.Aug 15, 2019
Terminal alkenes are easily derivatized, making them desirable functional group targets for polyketide synthase (PKS) engineering. However, they are rarely encountered in natural PKS systems. One mechanism for terminal alkene formation in PKSs is through the activity of an acyl-CoA dehydrogenase (ACAD). Herein, we use biochemical and structural analysis to understand the mechanism of terminal alkene formation catalyzed by an γ,δ-ACAD from the biosynthesis of the polyketide natural product FK506, TcsD. While TcsD is homologous to canonical α,β-ACADs, it acts regioselectively at the γ,δ-position and only on α,β-unsaturated substrates. Furthermore, this regioselectivity is controlled by a combination of bulky residues in the active site and a lateral shift in the positioning of the FAD cofactor within the enzyme. Substrate modeling suggests that TcsD utilizes a novel set of hydrogen bond donors for substrate activation and positioning, preventing dehydrogenation at the α,β position of substrates. From the structural and biochemical characterization of TcsD, key residues that contribute to regioselectivity and are unique to the protein family were determined and used to identify other putative γ,δ-ACADs that belong to diverse natural product biosynthetic gene clusters. These predictions are supported by the demonstration that a phylogenetically distant homolog of TcsD also regioselectively oxidizes α,β-unsaturated substrates. This work exemplifies a powerful approach to understand unique enzymatic reactions and will facilitate future enzyme discovery, inform enzyme engineering, and aid natural product characterization efforts.
0

Identification of a putative rhamnogalacturonan-II CMP-beta-Kdo transferase through a callus-based gene editing method which overcomes embryo lethality.

Yuan Zhang et al.Jan 1, 2023
The pectin rhamnogalacturonan II (RG-II) is an extraordinarily complex plant carbohydrate, crucial for developmental processes. RG-II contains over 20 distinct glycosidic linkages involving 12 distinct sugars; its biosynthesis is predicted to require numerous glycosyltransferases (GTs). RG-II9s low abundance in the plant cell wall belies its vital role in plant development. Minor structural modifications lead to lethality or severe growth impairment, posing significant challenges for GT identification via reverse genetics. Here we developed a novel method to generate viable loss-of-function Arabidopsis mutants in callus tissue via gene editing. We combined this with a candidate gene approach to characterize the GT29 RCKT1/MGP2. Analysis of rckt1 callus revealed a loss of 3-deoxy-D-manno-octulosonic acid (Kdo) from RG-II sidechain C, suggesting RCKT19s role as the RG-II CMP-beta-Kdo transferase1. RCKT1 becomes only the second confirmed GT implicated in RG-II biosynthesis. This discovery provides insight into RG-II9s structural impact on plant cell walls, as well as a method to further uncover the machinery required for the synthesis of this enigmatic polymer.
0

Massively parallel fitness profiling reveals multiple novel enzymes in Pseudomonas putida lysine metabolism

Mitchell Thompson et al.Oct 22, 2018
Despite intensive study for 50 years, the biochemical and genetic links between lysine metabolism and central metabolism in Pseudomonas putida remain unresolved. To establish these biochemical links we leveraged Random Barcode Transposon Sequencing (RB-TnSeq), a genome-wide assay measuring the fitness of thousands of genes in parallel, to identify multiple novel enzymes in both L- and D-lysine metabolism. We first describe three pathway enzymes that catabolize L-2-aminoadipate (L-2AA) to 2-ketoglutarate (2KG), connecting D-lysine to the TCA cycle. One of these enzymes, PP_5260, contains a DUF1338 domain, a family with no previously described biological function. Our work also identified the recently described CoA independent route of L-lysine degradation that metabolizes to succinate. We expanded on previous findings by demonstrating that glutarate hydroxylase CsiD is promiscuous in its 2-oxoacid selectivity. Proteomics of select pathway enzymes revealed that expression of catabolic genes is highly sensitive to particular pathway metabolites, implying intensive local and global regulation. This work demonstrates the utility of RB-TnSeq for discovering novel metabolic pathways in even well-studied bacteria, as well as a powerful tool for validating previous research.