LD
Laura Donlin
Author with expertise in Regulatory T Cell Development and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(80% Open Access)
Cited by:
2,284
h-index:
24
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry

Fan Zhang et al.May 6, 2019
+35
K
K
F
To define the cell populations that drive joint inflammation in rheumatoid arthritis (RA), we applied single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq) and flow cytometry to T cells, B cells, monocytes, and fibroblasts from 51 samples of synovial tissue from patients with RA or osteoarthritis (OA). Utilizing an integrated strategy based on canonical correlation analysis of 5,265 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass cytometry and transcriptomics revealed cell states expanded in RA synovia: THY1(CD90)+HLA-DRAhi sublining fibroblasts, IL1B+ pro-inflammatory monocytes, ITGAX+TBX21+ autoimmune-associated B cells and PDCD1+ peripheral helper T (TPH) cells and follicular helper T (TFH) cells. We defined distinct subsets of CD8+ T cells characterized by GZMK+, GZMB+, and GNLY+ phenotypes. We mapped inflammatory mediators to their source cell populations; for example, we attributed IL6 expression to THY1+HLA-DRAhi fibroblasts and IL1B production to pro-inflammatory monocytes. These populations are potentially key mediators of RA pathogenesis. Defining cell types and their activation status in rheumatoid arthritis (RA) is critical to understanding this disease. Raychaudhuri and colleagues leverage several single-cell -omics approaches to define the cellular processes and pathways in the human RA joint.
1
Citation901
0
Save
0

Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis

Deepak Rao et al.Jan 31, 2017
+25
J
M
D
The authors identify in patients with rheumatoid arthritis a pathogenic subset of CD4+ T cells that augments B cell responses within inflamed tissues. Michael Brenner and colleagues identify a subset of pathogenically activated PD-1hi CD4-positive T cells in patients with rheumatoid arthritis, and show that it promotes B-cell responses in tertiary lymphoid structures. The cells, which the authors designate as 'peripheral helper' T cells, differ from follicular helper cells in that they lack CXCR5, have altered BCL6 expression, and express chemokine receptors that direct migration to inflamed sites. CD4+ T cells are central mediators of autoimmune pathology; however, defining their key effector functions in specific autoimmune diseases remains challenging. Pathogenic CD4+ T cells within affected tissues may be identified by expression of markers of recent activation1. Here we use mass cytometry to analyse activated T cells in joint tissue from patients with rheumatoid arthritis, a chronic immune-mediated arthritis that affects up to 1% of the population2. This approach revealed a markedly expanded population of PD-1hiCXCR5−CD4+ T cells in synovium of patients with rheumatoid arthritis. However, these cells are not exhausted, despite high PD-1 expression. Rather, using multidimensional cytometry, transcriptomics, and functional assays, we define a population of PD-1hiCXCR5− ‘peripheral helper’ T (TPH) cells that express factors enabling B-cell help, including IL-21, CXCL13, ICOS, and MAF. Like PD-1hiCXCR5+ T follicular helper cells, TPH cells induce plasma cell differentiation in vitro through IL-21 secretion and SLAMF5 interaction (refs 3, 4). However, global transcriptomics highlight differences between TPH cells and T follicular helper cells, including altered expression of BCL6 and BLIMP1 and unique expression of chemokine receptors that direct migration to inflamed sites, such as CCR2, CX3CR1, and CCR5, in TPH cells. TPH cells appear to be uniquely poised to promote B-cell responses and antibody production within pathologically inflamed non-lymphoid tissues.
0
Citation845
0
Save
0

Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis

Fumitaka Mizoguchi et al.Feb 19, 2018
+23
K
K
F
Fibroblasts regulate tissue homeostasis, coordinate inflammatory responses, and mediate tissue damage. In rheumatoid arthritis (RA), synovial fibroblasts maintain chronic inflammation which leads to joint destruction. Little is known about fibroblast heterogeneity or if aberrations in fibroblast subsets relate to pathology. Here, we show functional and transcriptional differences between fibroblast subsets from human synovial tissues using bulk transcriptomics of targeted subpopulations and single-cell transcriptomics. We identify seven fibroblast subsets with distinct surface protein phenotypes, and collapse them into three subsets by integrating transcriptomic data. One fibroblast subset, characterized by the expression of proteins podoplanin, THY1 membrane glycoprotein and cadherin-11, but lacking CD34, is threefold expanded in patients with RA relative to patients with osteoarthritis. These fibroblasts localize to the perivascular zone in inflamed synovium, secrete proinflammatory cytokines, are proliferative, and have an in vitro phenotype characteristic of invasive cells. Our strategy may be used as a template to identify pathogenic stromal cellular subsets in other complex diseases.
0
Citation427
0
Save
0

Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes

Fan Zhang et al.Nov 8, 2023
+86
A
A
F
Abstract Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction 1 . There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity 1,2 . Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.
0
Citation36
-1
Save
37

IFN-γand TNF-αdrive aCXCL10+CCL2+ macrophage phenotype expanded in severe COVID-19 and other diseases with tissue inflammation

Fan Zhang et al.Aug 5, 2020
+6
I
L
F
Immunosuppressive and anti-cytokine treatment may have a protective effect for patients with COVID-19. Understanding the immune cell states shared between COVID-19 and other inflammatory diseases with established therapies may help nominate immunomodulatory therapies. Using an integrative strategy, we built a reference by meta-analyzing > 300,000 immune cells from COVID-19 and 5 inflammatory diseases including rheumatoid arthritis (RA), Crohn's disease (CD), ulcerative colitis (UC), lupus, and interstitial lung disease. Our cross-disease analysis revealed that an
37
Citation29
0
Save
83

Cellular deconstruction of inflamed synovium defines diverse inflammatory phenotypes in rheumatoid arthritis

Fan Zhang et al.Feb 28, 2022
+82
A
A
F
Summary Rheumatoid arthritis (RA) is a prototypical autoimmune disease that causes destructive tissue inflammation in joints and elsewhere. Clinical challenges in RA include the empirical selection of drugs to treat patients, inadequate responders with incomplete disease remission, and lack of a cure. We profiled the full spectrum of cells in inflamed synovium from patients with RA with the goal of deconstructing the cell states and pathways characterizing pathogenic heterogeneity in RA. Our multicenter consortium effort used multi-modal CITE-seq, RNA-seq, and histology of synovial tissue from 79 donors to build a >314,000 single-cell RA synovial cell atlas with 77 cell states from T, B/plasma, natural killer, myeloid, stromal, and endothelial cells. We stratified tissue samples into six distinct cell type abundance phenotypes (CTAPs) individually enriched for specific cell states. These CTAPs demonstrate the striking diversity of RA synovial inflammation, ranging from marked enrichment of T and B cells (CTAP-TB) to a congregation of specific myeloid, fibroblast, and endothelial cells largely lacking lymphocytes (CTAP-EFM). Disease-relevant cytokines, histology, and serology metrics are associated with certain CTAPs. This comprehensive RA synovial atlas and molecular, tissue-based CTAP stratification reveal new insights into RA pathology and heterogeneity, which could lead to novel targeted-treatment approaches in RA.
83
Citation23
0
Save
0

High dimensional analyses of cells dissociated from cryopreserved synovial tissue

Laura Donlin et al.Mar 19, 2018
+41
K
D
L
Abstract Background Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership (AMP) RA/SLE network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. Methods Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10%-DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T cell, B cell, and macrophage suspensions for bulk population RNA-seq and plate-based single cell CEL-Seq2 RNA-seq. Results Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ∼30 arthroplasty and ∼20 biopsy samples yielded a consensus digestion protocol using 100µg/mL of Liberase TL ™ enzyme. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished: 1) diverse fibroblast phenotypes, 2) distinct populations of memory B cells and antibody-secreting cells, and 3) multiple CD4+ and CD8+ T cell activation states. Bulk RNA sequencing of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. Conclusion We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers.
0
Citation8
0
Save
17

Clonally expanded CD38hi cytotoxic CD8 T cells define the T cell infiltrate in checkpoint inhibitor-associated arthritis

Runci Wang et al.Oct 20, 2021
+20
J
E
R
Abstract Immune checkpoint inhibitor (ICI) therapies that promote T cell activation have improved outcomes for advanced malignancies yet also elicit harmful autoimmune reactions. The T cell mechanisms mediating these iatrogenic autoimmune events remain unclear. Here we assayed T cells from joints of patients affected by ICI-induced inflammatory arthritis (ICI-arthritis), which can present clinically indistinguishable from rheumatoid arthritis (RA). Compared to the autoimmune arthritides RA and psoriatic arthritis (PsA), ICI-arthritis joints contained an expanded CD38 hi CD127 − CD8 + T cell subset that displays cytotoxic, effector, and interferon (IFN) response signatures. The abundance of CD38 hi CD8 T cells in ICI-arthritis resulted from a limited number of clones that could be found proliferating in the joint. Exposure of synovial T cells to Type I IFN, more so than IFN-γ, induces the CD38 hi cytotoxic phenotype. Relative to other CD8 + T cell subsets in the joints, the CD38 hi population is distinct from a dysfunctional population and clonally most related to TCF7 + memory populations. Examination of synovial tissue from bilateral knee arthroplasty demonstrated considerable sharing of TCR clonotypes in the CD38 hi CD8 T cell fraction from both knees. These results define a distinct CD8 T cell subset that may be directly activated by ICI therapy and mediate a tissue-specific autoimmune cellular reaction in patient joints.
17
Citation7
0
Save
0

The chromatin landscape of pathogenic transcriptional cell states in rheumatoid arthritis

Ami Ben‐Artzi et al.May 31, 2024
+78
A
S
A
Abstract Synovial tissue inflammation is a hallmark of rheumatoid arthritis (RA). Recent work has identified prominent pathogenic cell states in inflamed RA synovial tissue, such as T peripheral helper cells; however, the epigenetic regulation of these states has yet to be defined. Here, we examine genome-wide open chromatin at single-cell resolution in 30 synovial tissue samples, including 12 samples with transcriptional data in multimodal experiments. We identify 24 chromatin classes and predict their associated transcription factors, including a CD8 + GZMK + class associated with EOMES and a lining fibroblast class associated with AP-1. By integrating with an RA tissue transcriptional atlas, we propose that these chromatin classes represent ‘superstates’ corresponding to multiple transcriptional cell states. Finally, we demonstrate the utility of this RA tissue chromatin atlas through the associations between disease phenotypes and chromatin class abundance, as well as the nomination of classes mediating the effects of putatively causal RA genetic variants.
0
Citation3
0
Save
10

Heterogeneity of Inflammation-associated Synovial Fibroblasts in Rheumatoid Arthritis and Its Drivers

Melanie Smith et al.Mar 2, 2022
+7
M
V
M
Abstract Inflammation of non-barrier immunologically quiescent tissues is associated with a massive influx of blood-borne innate and adaptive immune cells. Cues from the latter are likely to alter and expand the spectrum of states observed in cells that are constitutively resident. However, local communications between immigrant and resident cell types in human inflammatory disease remain poorly understood. Here, we explored heterogeneity of synovial fibroblasts (FLS) in inflamed joints of rheumatoid arthritis (RA) patients using paired single cell RNA and ATAC sequencing (scRNA/ATAC-seq), multiplexed imaging, and spatial transcriptomics along with in vitro modeling of cell extrinsic factor signaling. These analyses suggest that local exposures to myeloid and T cell derived cytokines, TNFα, IFNγ, IL-1β, or lack thereof, drive six distinct FLS states some of which closely resemble fibroblast states in other disease-affected tissues including skin and colon. Our results highlight a role for concurrent, spatially distributed cytokine signaling within the inflamed synovium.
10
Citation3
0
Save
Load More