AF
Alex Fornito
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
56
(73% Open Access)
Cited by:
8,017
h-index:
74
/
i10-index:
160
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Network-based statistic: Identifying differences in brain networks

Andrew Zalesky et al.Jun 26, 2010
Large-scale functional or structural brain connectivity can be modeled as a network, or graph. This paper presents a statistical approach to identify connections in such a graph that may be associated with a diagnostic status in case-control studies, changing psychological contexts in task-based studies, or correlations with various cognitive and behavioral measures. The new approach, called the network-based statistic (NBS), is a method to control the family-wise error rate (in the weak sense) when mass-univariate testing is performed at every connection comprising the graph. To potentially offer a substantial gain in power, the NBS exploits the extent to which the connections comprising the contrast or effect of interest are interconnected. The NBS is based on the principles underpinning traditional cluster-based thresholding of statistical parametric maps. The purpose of this paper is to: (i) introduce the NBS for the first time; (ii) evaluate its power with the use of receiver operating characteristic (ROC) curves; and, (iii) demonstrate its utility with application to a real case-control study involving a group of people with schizophrenia for which resting-state functional MRI data were acquired. The NBS identified a expansive dysconnected subnetwork in the group with schizophrenia, primarily comprising fronto-temporal and occipito-temporal dysconnections, whereas a mass-univariate analysis controlled with the false discovery rate failed to identify a subnetwork.
0

An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI

Linden Parkes et al.Dec 24, 2017
Estimates of functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) are sensitive to artefacts caused by in-scanner head motion. This susceptibility has motivated the development of numerous denoising methods designed to mitigate motion-related artefacts. Here, we compare popular retrospective rs-fMRI denoising methods, such as regression of head motion parameters and mean white matter (WM) and cerebrospinal fluid (CSF) (with and without expansion terms), aCompCor, volume censoring (e.g., scrubbing and spike regression), global signal regression and ICA-AROMA, combined into 19 different pipelines. These pipelines were evaluated across five different quality control benchmarks in four independent datasets associated with varying levels of motion. Pipelines were benchmarked by examining the residual relationship between in-scanner movement and functional connectivity after denoising; the effect of distance on this residual relationship; whole-brain differences in functional connectivity between high- and low-motion healthy controls (HC); the temporal degrees of freedom lost during denoising; and the test-retest reliability of functional connectivity estimates. We also compared the sensitivity of each pipeline to clinical differences in functional connectivity in independent samples of people with schizophrenia and obsessive-compulsive disorder. Our results indicate that (1) simple linear regression of regional fMRI time series against head motion parameters and WM/CSF signals (with or without expansion terms) is not sufficient to remove head motion artefacts; (2) aCompCor pipelines may only be viable in low-motion data; (3) volume censoring performs well at minimising motion-related artefact but a major benefit of this approach derives from the exclusion of high-motion individuals; (4) while not as effective as volume censoring, ICA-AROMA performed well across our benchmarks for relatively low cost in terms of data loss; (5) the addition of global signal regression improved the performance of nearly all pipelines on most benchmarks, but exacerbated the distance-dependence of correlations between motion and functional connectivity; and (6) group comparisons in functional connectivity between healthy controls and schizophrenia patients are highly dependent on preprocessing strategy. We offer some recommendations for best practice and outline simple analyses to facilitate transparent reporting of the degree to which a given set of findings may be affected by motion-related artefact.
0

Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection

Alex Fornito et al.Jul 17, 2012
Analyses of functional interactions between large-scale brain networks have identified two broad systems that operate in apparent competition or antagonism with each other. One system, termed the default mode network (DMN), is thought to support internally oriented processing. The other system acts as a generic external attention system (EAS) and mediates attention to exogenous stimuli. Reports that the DMN and EAS show anticorrelated activity across a range of experimental paradigms suggest that competition between these systems supports adaptive behavior. Here, we used functional MRI to characterize functional interactions between the DMN and different EAS components during performance of a recollection task known to coactivate regions of both networks. Using methods to isolate task-related, context-dependent changes in functional connectivity between these systems, we show that increased cooperation between the DMN and a specific right-lateralized frontoparietal component of the EAS is associated with more rapid memory recollection. We also show that these cooperative dynamics are facilitated by a dynamic reconfiguration of the functional architecture of the DMN into core and transitional modules, with the latter serving to enhance integration with frontoparietal regions. In particular, the right posterior cingulate cortex may act as a critical information-processing hub that provokes these context-dependent reconfigurations from an intrinsic or default state of antagonism. Our findings highlight the dynamic, context-dependent nature of large-scale brain dynamics and shed light on their contribution to individual differences in behavior.
0

Disrupted Axonal Fiber Connectivity in Schizophrenia

Andrew Zalesky et al.Oct 30, 2010
Schizophrenia is believed to result from abnormal functional integration of neural processes thought to arise from aberrant brain connectivity. However, evidence for anatomical dysconnectivity has been equivocal, and few studies have examined axonal fiber connectivity in schizophrenia at the level of whole-brain networks.Cortico-cortical anatomical connectivity at the scale of axonal fiber bundles was modeled as a network. Eighty-two network nodes demarcated functionally specific cortical regions. Sixty-four direction diffusion tensor-imaging coupled with whole-brain tractography was performed to map the architecture via which network nodes were interconnected in each of 74 patients with schizophrenia and 32 age- and gender-matched control subjects. Testing was performed to identify pairs of nodes between which connectivity was impaired in the patient group. The connectional architecture of patients was tested for changes in five network attributes: nodal degree, small-worldness, efficiency, path length, and clustering.Impaired connectivity in the patient group was found to involve a distributed network of nodes comprising medial frontal, parietal/occipital, and the left temporal lobe. Although small-world attributes were conserved in schizophrenia, the cortex was interconnected more sparsely and up to 20% less efficiently in patients. Intellectual performance was found to be associated with brain efficiency in control subjects but not in patients.This study presents evidence of widespread dysconnectivity in white-matter connectional architecture in a large sample of patients with schizophrenia. When considered from the perspective of recent evidence for impaired synaptic plasticity, this study points to a multifaceted pathophysiology in schizophrenia encompassing axonal as well as putative synaptic mechanisms.
0

On the use of correlation as a measure of network connectivity

Andrew Zalesky et al.Feb 11, 2012
Numerous studies have demonstrated that brain networks derived from neuroimaging data have nontrivial topological features, such as small-world organization, modular structure and highly connected hubs. In these studies, the extent of connectivity between pairs of brain regions has often been measured using some form of statistical correlation. This article demonstrates that correlation as a measure of connectivity in and of itself gives rise to networks with non-random topological features. In particular, networks in which connectivity is measured using correlation are inherently more clustered than random networks, and as such are more likely to be small-world networks. Partial correlation as a measure of connectivity also gives rise to networks with non-random topological features. Partial correlation networks are inherently less clustered than random networks. Network measures in correlation networks should be benchmarked against null networks that respect the topological structure induced by correlation measurements. Prevalently used random rewiring algorithms do not yield appropriate null networks for some network measures. Null networks are proposed to explicitly normalize for the inherent topological structure found in correlation networks, resulting in more conservative estimates of small-world organization. A number of steps may be needed to normalize each network measure individually and control for distinct features (e.g. degree distribution). The main conclusion of this article is that correlation can and should be used to measure connectivity, however appropriate null networks should be used to benchmark network measures in correlation networks.
0

Abnormal Structural Networks Characterize Major Depressive Disorder: A Connectome Analysis

Mayuresh Korgaonkar et al.Mar 7, 2014

Background

 Major depressive disorder (MDD) has been shown to be associated with a disrupted topological organization of functional brain networks. However, little is known regarding whether these changes have a structural basis. Diffusion tensor imaging (DTI) enables comprehensive whole-brain mapping of the white matter tracts that link regions distributed throughout the entire brain, the so-called human connectome. 

Methods

 We examined whole-brain structural networks in a cohort of 95 MDD outpatients and 102 matched control subjects. Structural networks were represented by an 84 × 84 connectivity matrix representing probabilistic white matter connections between 84 parcellated cortical and subcortical regions using DTI tractography. Network-based statistics were used to assess differences in the interregional connectivity matrix between the two groups, and graph theory was used to examine overall topological organization. 

Results

 Our network-based statistics analysis demonstrates lowered structural connectivity within two distinct brain networks that are present in depression: the first primarily involves the regions of the default mode network and the second comprises the frontal cortex, thalamus, and caudate regions that are central in emotional and cognitive processing. These two altered networks were observed in the context of an overall preservation of topology as reflected as no significant group differences for the graph-theory measures. 

Conclusions

 This is the first report to use DTI to show the structural connectomic alterations present in MDD. Our findings highlight that altered structural connectivity between nodes of the default mode network and the frontal-thalamo-caudate regions are core neurobiological features associated with MDD.
0

Genetic Influences on Cost-Efficient Organization of Human Cortical Functional Networks

Alex Fornito et al.Mar 2, 2011
The human cerebral cortex is a complex network of functionally specialized regions interconnected by axonal fibers, but the organizational principles underlying cortical connectivity remain unknown. Here, we report evidence that one such principle for functional cortical networks involves finding a balance between maximizing communication efficiency and minimizing connection cost, referred to as optimization of network cost-efficiency. We measured spontaneous fluctuations of the blood oxygenation level-dependent signal using functional magnetic resonance imaging in healthy monozygotic (16 pairs) and dizygotic (13 pairs) twins and characterized cost-efficient properties of brain network functional connectivity between 1041 distinct cortical regions. At the global network level, 60% of the interindividual variance in cost-efficiency of cortical functional networks was attributable to additive genetic effects. Regionally, significant genetic effects were observed throughout the cortex in a largely bilateral pattern, including bilateral posterior cingulate and medial prefrontal cortices, dorsolateral prefrontal and superior parietal cortices, and lateral temporal and inferomedial occipital regions. Genetic effects were stronger for cost-efficiency than for other metrics considered, and were more clearly significant in functional networks operating in the 0.09-0.18 Hz frequency interval than at higher or lower frequencies. These findings are consistent with the hypothesis that brain networks evolved to satisfy competitive selection criteria of maximizing efficiency and minimizing cost, and that optimization of network cost-efficiency represents an important principle for the brain's functional organization.
Load More