SL
Seong Lee
Author with expertise in Mechanisms of Intracellular Membrane Trafficking
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
23
h-index:
21
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
249

All-optical visualization of specific molecules in the ultrastructural context of brain tissue

Ons M’Saad et al.Apr 5, 2022
+14
I
R
O
Summary Understanding the molecular anatomy and neural connectivity of the brain requires imaging technologies that can map the 3D nanoscale distribution of specific proteins in the context of brain ultrastructure. Light and electron microscopy (EM) enable visualization of either specific labels or anatomical ultrastructure, but combining molecular specificity with anatomical context is challenging. Here, we present pan-Expansion Microscopy of tissue (pan-ExM-t), an all-optical mouse brain imaging method that combines ∼24-fold linear expansion of biological samples with fluorescent pan-staining of protein densities (providing EM-like ultrastructural context), and immunolabeling of protein targets (for molecular imaging). We demonstrate the versatility of this approach by imaging the established synaptic markers Homer1, Bassoon, PSD-95, Synaptophysin, the astrocytic protein GFAP, myelin basic protein (MBP), and anti-GFP antibodies in dissociated neuron cultures and mouse brain tissue sections. pan-ExM-t reveals these markers in the context of ultrastructural features such as pre and postsynaptic densities, 3D nanoarchitecture of neuropil, and the fine structures of cellular organelles. pan-ExM-t is adoptable in any neurobiological laboratory with access to a confocal microscope and has therefore broad applicability in the research community. Highlights pan-ExM-t visualizes proteins in the context of synaptic ultrastructure Lipid labeling in pan-ExM-t reveals organellar and cellular membranes All-optical, easily accessible alternative to correlative light/electron microscopy High potential for high throughput connectomics studies
249
Citation21
0
Save
2

Two successive oligomeric Munc13 assemblies scaffold vesicle docking and SNARE assembly to support neurotransmitter release

Manindra Bera et al.Jul 16, 2023
+9
R
K
M
The critical presynaptic protein Munc13 serves numerous roles in the process of docking and priming synaptic vesicles. Here we investigate the functional significance of two distinct oligomers of the Munc13 core domain (Munc13C) comprising C1-C2B-MUN-C2C. Oligomer interface point mutations that specifically destabilized either the trimer or lateral hexamer assemblies of Munc13C disrupted vesicle docking, trans-SNARE formation, and Ca 2+ -triggered vesicle fusion in vitro and impaired neurotransmitter secretion and motor nervous system function in vivo. We suggest that a progression of oligomeric Munc13 complexes couples vesicle docking and assembly of a precise number of SNARE molecules to support rapid and high-fidelity vesicle priming.
2
Citation2
0
Save
3

Novel Roles for Diacylglycerol in Synaptic Vesicle Priming and Release Revealed by Complete Reconstitution of Core Protein Machinery

Ramalingam Sundaram et al.Jun 7, 2023
+10
M
A
R
Here we introduce the full functional reconstitution of genetically-validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca 2+ . Using this novel setup, we discover new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca 2+- triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca 2+ -dependent release, and high concentrations reduce clamping and permit extensive spontaneous release. As expected, DAG also increases the number of ready-release vesicles. Dynamic single-molecule imaging of Complexin binding to ready-release vesicles directly establishes that DAG accelerates the rate of SNAREpin assembly mediated by Munc13 and Munc18 chaperones. The selective effects of physiologically validated mutations confirmed that the Munc18-Syntaxin-VAMP2 'template' complex is a functional intermediate in the production of primed, ready-release vesicles, which requires the coordinated action of Munc13 and Munc18.Munc13 and Munc18 are SNARE-associated chaperones that act as "priming" factors, facilitating the formation of a pool of docked, release-ready vesicles and regulating Ca 2+ -evoked neurotransmitter release. Although important insights into Munc18/Munc13 function have been gained, how they assemble and operate together remains enigmatic. To address this, we developed a novel biochemically-defined fusion assay which enabled us to investigate the cooperative action of Munc13 and Munc18 in molecular terms. We find that Munc18 nucleates the SNARE complex, while Munc13 promotes and accelerates the SNARE assembly in a DAG-dependent manner. The concerted action of Munc13 and Munc18 stages the SNARE assembly process to ensure efficient 'clamping' and formation of stably docked vesicles, which can be triggered to fuse rapidly (∼10 msec) upon Ca 2+ influx.