MK
Mohammad Keshtkaran
Author with expertise in Brain-Computer Interfaces in Neuroscience and Medicine
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
45
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
57

A large-scale neural network training framework for generalized estimation of single-trial population dynamics

Mohammad Keshtkaran et al.Jan 15, 2021
Abstract Large-scale recordings of neural activity are providing new opportunities to study network-level dynamics. However, the sheer volume of data and its dynamical complexity are critical barriers to uncovering and interpreting these dynamics. Deep learning methods are a promising approach due to their ability to uncover meaningful relationships from large, complex, and noisy datasets. When applied to high-D spiking data from motor cortex (M1) during stereotyped behaviors, they offer improvements in the ability to uncover dynamics and their relation to subjects’ behaviors on a millisecond timescale. However, applying such methods to less-structured behaviors, or in brain areas that are not well-modeled by autonomous dynamics, is far more challenging, because deep learning methods often require careful hand-tuning of complex model hyperparameters (HPs). Here we demonstrate AutoLFADS, a large-scale, automated model-tuning framework that can characterize dynamics in diverse brain areas without regard to behavior. AutoLFADS uses distributed computing to train dozens of models simultaneously while using evolutionary algorithms to tune HPs in a completely unsupervised way. This enables accurate inference of dynamics out-of-the-box on a variety of datasets, including data from M1 during stereotyped and free-paced reaching, somatosensory cortex during reaching with perturbations, and frontal cortex during cognitive timing tasks. We present a cloud software package and comprehensive tutorials that enable new users to apply the method without needing dedicated computing resources.
7

Stabilizing brain-computer interfaces through alignment of latent dynamics

Brianna Karpowicz et al.Apr 8, 2022
Abstract Intracortical brain-computer interfaces (iBCIs) restore motor function to people with paralysis by translating brain activity into control signals for external devices. In current iBCIs, instabilities at the neural interface result in a degradation of decoding performance, which necessitates frequent supervised recalibration using new labeled data. One potential solution is to use the latent manifold structure that underlies neural population activity to facilitate a stable mapping between brain activity and behavior. Recent efforts using unsupervised approaches have improved iBCI stability using this principle; however, existing methods treat each time step as an independent sample and do not account for latent dynamics. Dynamics have been used to enable high performance prediction of movement intention, and may also help improve stabilization. Here, we present a platform for Nonlinear Manifold Alignment with Dynamics (NoMAD), which stabilizes iBCI decoding using recurrent neural network models of dynamics. NoMAD uses unsupervised distribution alignment to update the mapping of nonstationary neural data to a consistent set of neural dynamics, thereby providing stable input to the iBCI decoder. In applications to data from monkey motor cortex collected during motor tasks, NoMAD enables accurate behavioral decoding with unparalleled stability over weeks-to months-long timescales without any supervised recalibration.
3

Estimating muscle activation from EMG using deep learning-based dynamical systems models

Lahiru Wimalasena et al.Dec 3, 2021
Abstract Objective To study the neural control of movement, it is often necessary to estimate how muscles are activated across a variety of behavioral conditions. However, estimating the latent command signal that underlies muscle activation is challenging due to its complex relation with recorded electromyographic (EMG) signals. Common approaches estimate muscle activation independently for each channel or require manual tuning of model hyperparameters to optimally preserve behaviorally-relevant features. Approach Here, we adapted AutoLFADS, a large-scale, unsupervised deep learning approach originally designed to de-noise cortical spiking data, to estimate muscle activation from multi-muscle EMG signals. AutoLFADS uses recurrent neural networks (RNNs) to model the spatial and temporal regularities that underlie multi-muscle activation. Main Results We first tested AutoLFADS on muscle activity from the rat hindlimb during locomotion, and found that it dynamically adjusts its frequency response characteristics across different phases of behavior. The model produced single-trial estimates of muscle activation that improved prediction of joint kinematics as compared to low-pass or Bayesian filtering. We also tested the generality of the approach by applying AutoLFADS to monkey forearm muscle activity from an isometric task. AutoLFADS uncovered previously uncharacterized high-frequency oscillations in the EMG that enhanced the correlation with measured force compared to low-pass or Bayesian filtering. The AutoLFADS-inferred estimates of muscle activation were also more closely correlated with simultaneously-recorded motor cortical activity than other tested approaches. Significance Ultimately, this method leverages both dynamical systems modeling and artificial neural networks to provide estimates of muscle activation for multiple muscles that can be used for further studies of multi-muscle coordination and its control by upstream brain areas.