CP
Chethan Pandarinath
Author with expertise in Brain-Computer Interfaces in Neuroscience and Medicine
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(79% Open Access)
Cited by:
1,032
h-index:
23
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Inferring single-trial neural population dynamics using sequential auto-encoders

Chethan Pandarinath et al.Sep 14, 2018
+11
J
D
C
Neuroscience is experiencing a revolution in which simultaneous recording of thousands of neurons is revealing population dynamics that are not apparent from single-neuron responses. This structure is typically extracted from data averaged across many trials, but deeper understanding requires studying phenomena detected in single trials, which is challenging due to incomplete sampling of the neural population, trial-to-trial variability, and fluctuations in action potential timing. We introduce latent factor analysis via dynamical systems, a deep learning method to infer latent dynamics from single-trial neural spiking data. When applied to a variety of macaque and human motor cortical datasets, latent factor analysis via dynamical systems accurately predicts observed behavioral variables, extracts precise firing rate estimates of neural dynamics on single trials, infers perturbations to those dynamics that correlate with behavioral choices, and combines data from non-overlapping recording sessions spanning months to improve inference of underlying dynamics. LFADS, a deep learning method for analyzing neural population activity, can extract neural dynamics from single-trial recordings, stitch separate datasets into a single model, and infer perturbations, for example, from behavioral choices to these dynamics.
0

High performance communication by people with paralysis using an intracortical brain-computer interface

Chethan Pandarinath et al.Feb 21, 2017
+6
C
P
C
Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; Spüler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O’Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a high-performance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCIs (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4–4.2) and information throughput (by a factor of 2.2–4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function. Clinical Trial No: NCT00912041
57

A large-scale neural network training framework for generalized estimation of single-trial population dynamics

Mohammad Keshtkaran et al.Jan 15, 2021
+8
S
A
M
Abstract Large-scale recordings of neural activity are providing new opportunities to study network-level dynamics. However, the sheer volume of data and its dynamical complexity are critical barriers to uncovering and interpreting these dynamics. Deep learning methods are a promising approach due to their ability to uncover meaningful relationships from large, complex, and noisy datasets. When applied to high-D spiking data from motor cortex (M1) during stereotyped behaviors, they offer improvements in the ability to uncover dynamics and their relation to subjects’ behaviors on a millisecond timescale. However, applying such methods to less-structured behaviors, or in brain areas that are not well-modeled by autonomous dynamics, is far more challenging, because deep learning methods often require careful hand-tuning of complex model hyperparameters (HPs). Here we demonstrate AutoLFADS, a large-scale, automated model-tuning framework that can characterize dynamics in diverse brain areas without regard to behavior. AutoLFADS uses distributed computing to train dozens of models simultaneously while using evolutionary algorithms to tune HPs in a completely unsupervised way. This enables accurate inference of dynamics out-of-the-box on a variety of datasets, including data from M1 during stereotyped and free-paced reaching, somatosensory cortex during reaching with perturbations, and frontal cortex during cognitive timing tasks. We present a cloud software package and comprehensive tutorials that enable new users to apply the method without needing dedicated computing resources.
7

Stabilizing brain-computer interfaces through alignment of latent dynamics

Brianna Karpowicz et al.Apr 8, 2022
+6
L
Y
B
Abstract Intracortical brain-computer interfaces (iBCIs) restore motor function to people with paralysis by translating brain activity into control signals for external devices. In current iBCIs, instabilities at the neural interface result in a degradation of decoding performance, which necessitates frequent supervised recalibration using new labeled data. One potential solution is to use the latent manifold structure that underlies neural population activity to facilitate a stable mapping between brain activity and behavior. Recent efforts using unsupervised approaches have improved iBCI stability using this principle; however, existing methods treat each time step as an independent sample and do not account for latent dynamics. Dynamics have been used to enable high performance prediction of movement intention, and may also help improve stabilization. Here, we present a platform for Nonlinear Manifold Alignment with Dynamics (NoMAD), which stabilizes iBCI decoding using recurrent neural network models of dynamics. NoMAD uses unsupervised distribution alignment to update the mapping of nonstationary neural data to a consistent set of neural dynamics, thereby providing stable input to the iBCI decoder. In applications to data from monkey motor cortex collected during motor tasks, NoMAD enables accurate behavioral decoding with unparalleled stability over weeks-to months-long timescales without any supervised recalibration.
26

Representation learning for neural population activity with Neural Data Transformers

Joel Ye et al.Jan 19, 2021
C
J
Abstract Neural population activity is theorized to reflect an underlying dynamical structure. This structure can be accurately captured using state space models with explicit dynamics, such as those based on recurrent neural networks (RNNs). However, using recurrence to explicitly model dynamics necessitates sequential processing of data, slowing real-time applications such as brain-computer interfaces. Here we introduce the Neural Data Transformer (NDT), a non-recurrent alternative. We test the NDT’s ability to capture autonomous dynamical systems by applying it to synthetic datasets with known dynamics and data from monkey motor cortex during a reaching task well-modeled by RNNs. The NDT models these datasets as well as state-of-the-art recurrent models. Further, its non-recurrence enables 3.9ms inference, well within the loop time of real-time applications and more than 6 times faster than recurrent baselines on the monkey reaching dataset. These results suggest that an explicit dynamics model is not necessary to model autonomous neural population dynamics. Code github.com/snel-repo/neural-data-transformers .
25

A deep learning framework for inference of single-trial neural population dynamics from calcium imaging with sub-frame temporal resolution

Zhu Feng et al.Nov 21, 2021
+5
R
H
Z
Abstract In many brain areas, neural populations act as a coordinated network whose state is tied to behavior on a moment-by-moment basis and millisecond timescale. Two-photon (2p) calcium imaging is a powerful tool to probe network-scale computation, as it can measure the activity of many individual neurons, monitor multiple cortical layers simultaneously, and sample from identified cell types. However, estimating network state and dynamics from 2p measurements has proven challenging because of noise, inherent nonlinearities, and limitations on temporal resolution. Here we describe RADICaL, a deep learning method to overcome these limitations at the population level. RADICaL extends methods that exploit dynamics in spiking activity for application to deconvolved calcium signals, whose statistics and temporal dynamics are quite distinct from electrophysiologically-recorded spikes. It incorporates a novel network training strategy that capitalizes on the timing of 2p sampling to recover network dynamics with high temporal precision. In synthetic tests, RADICaL infers network state more accurately than previous methods, particularly for high-frequency components. In real 2p recordings from sensorimotor areas in mice performing a “water grab” task, RADICaL infers network state with close correspondence to single-trial variations in behavior, and maintains high-quality inference even when neuronal populations are substantially reduced.
0

Myomatrix arrays for high-definition muscle recording

Bryce Chung et al.Feb 22, 2023
+51
R
Y
B
Abstract Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system’s actual motor output – the activation of muscle fibers by motor neurons – typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices (“Myomatrix arrays”) that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a “motor unit”, during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system’s motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and in identifying pathologies of the motor system.
60

BRAND: A platform for closed-loop experiments with deep network models

Yahia Ali et al.Aug 12, 2023
+14
M
K
Y
Artificial neural networks (ANNs) are state-of-the-art tools for modeling and decoding neural activity, but deploying them in closed-loop experiments with tight timing constraints is challenging due to their limited support in existing real-time frameworks. Researchers need a platform that fully supports high-level languages for running ANNs (e.g., Python and Julia) while maintaining support for languages that are critical for low-latency data acquisition and processing (e.g., C and C++). To address these needs, we introduce the Backend for Realtime Asynchronous Neural Decoding (BRAND). BRAND comprises Linux processes, termed nodes , which communicate with each other in a graph via streams of data. Its asynchronous design allows for acquisition, control, and analysis to be executed in parallel on streams of data that may operate at different timescales. BRAND uses Redis to send data between nodes, which enables fast inter-process communication and supports 54 different programming languages. Thus, developers can easily deploy existing ANN models in BRAND with minimal implementation changes. In our tests, BRAND achieved <600 microsecond latency between processes when sending large quantities of data (1024 channels of 30 kHz neural data in 1-millisecond chunks). BRAND runs a brain-computer interface with a recurrent neural network (RNN) decoder with less than 8 milliseconds of latency from neural data input to decoder prediction. In a real-world demonstration of the system, participant T11 in the BrainGate2 clinical trial performed a standard cursor control task, in which 30 kHz signal processing, RNN decoding, task control, and graphics were all executed in BRAND. This system also supports real-time inference with complex latent variable models like Latent Factor Analysis via Dynamical Systems. By providing a framework that is fast, modular, and language-agnostic, BRAND lowers the barriers to integrating the latest tools in neuroscience and machine learning into closed-loop experiments.
3

Estimating muscle activation from EMG using deep learning-based dynamical systems models

Lahiru Wimalasena et al.Dec 3, 2021
+7
M
J
L
Abstract Objective To study the neural control of movement, it is often necessary to estimate how muscles are activated across a variety of behavioral conditions. However, estimating the latent command signal that underlies muscle activation is challenging due to its complex relation with recorded electromyographic (EMG) signals. Common approaches estimate muscle activation independently for each channel or require manual tuning of model hyperparameters to optimally preserve behaviorally-relevant features. Approach Here, we adapted AutoLFADS, a large-scale, unsupervised deep learning approach originally designed to de-noise cortical spiking data, to estimate muscle activation from multi-muscle EMG signals. AutoLFADS uses recurrent neural networks (RNNs) to model the spatial and temporal regularities that underlie multi-muscle activation. Main Results We first tested AutoLFADS on muscle activity from the rat hindlimb during locomotion, and found that it dynamically adjusts its frequency response characteristics across different phases of behavior. The model produced single-trial estimates of muscle activation that improved prediction of joint kinematics as compared to low-pass or Bayesian filtering. We also tested the generality of the approach by applying AutoLFADS to monkey forearm muscle activity from an isometric task. AutoLFADS uncovered previously uncharacterized high-frequency oscillations in the EMG that enhanced the correlation with measured force compared to low-pass or Bayesian filtering. The AutoLFADS-inferred estimates of muscle activation were also more closely correlated with simultaneously-recorded motor cortical activity than other tested approaches. Significance Ultimately, this method leverages both dynamical systems modeling and artificial neural networks to provide estimates of muscle activation for multiple muscles that can be used for further studies of multi-muscle coordination and its control by upstream brain areas.
0

Distinct representations of finger movement and force in human motor and premotor cortices

Robert Flint et al.Feb 19, 2020
+4
K
M
R
The ability to grasp and manipulate objects requires controlling both finger movement kinematics and isometric force. Previous work suggests that these behavioral modes are controlled separately, but it is unknown whether the cerebral cortex represents them differently. Here, we investigated this question by recording high-density electrocorticography from the motor and premotor cortices of seven human subjects performing a sequential movement-force motor task. We decoded finger movement (0.7±0.3 fractional variance account for; FVAF) and force (0.7±0.2 FVAF) with high accuracy, yet found different spatial representations. We also found clear distinctions in electrocorticographic activity by using deep learning methods to uncover state-space representations, and by developing a new metric, the neural vector angle. Thus, state-space techniques can help to investigate broad cortical networks. Finally, we were able to classify the behavioral mode from neural signals with high accuracy (90±6%). Thus, finger movement and force have distinct representations in motor/premotor cortices. This will inform our understanding of the neural control of movement as well as the design of grasp brain-machine interfaces.
Load More