EF
Emily Farrow
Author with expertise in Standards and Guidelines for Genetic Variant Interpretation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
2,325
h-index:
38
/
i10-index:
67
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Rapid Whole-Genome Sequencing for Genetic Disease Diagnosis in Neonatal Intensive Care Units

Carol Saunders et al.Oct 3, 2012
Monogenic diseases are frequent causes of neonatal morbidity and mortality, and disease presentations are often undifferentiated at birth. More than 3500 monogenic diseases have been characterized, but clinical testing is available for only some of them and many feature clinical and genetic heterogeneity. Hence, an immense unmet need exists for improved molecular diagnosis in infants. Because disease progression is extremely rapid, albeit heterogeneous, in newborns, molecular diagnoses must occur quickly to be relevant for clinical decision-making. We describe 50-hour differential diagnosis of genetic disorders by whole-genome sequencing (WGS) that features automated bioinformatic analysis and is intended to be a prototype for use in neonatal intensive care units. Retrospective 50-hour WGS identified known molecular diagnoses in two children. Prospective WGS disclosed potential molecular diagnosis of a severe GJB2-related skin disease in one neonate; BRAT1-related lethal neonatal rigidity and multifocal seizure syndrome in another infant; identified BCL9L as a novel, recessive visceral heterotaxy gene (HTX6) in a pedigree; and ruled out known candidate genes in one infant. Sequencing of parents or affected siblings expedited the identification of disease genes in prospective cases. Thus, rapid WGS can potentially broaden and foreshorten differential diagnosis, resulting in fewer empirical treatments and faster progression to genetic and prognostic counseling.
0
Citation598
0
Save
0

Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders

Sarah Soden et al.Dec 3, 2014
Neurodevelopmental disorders (NDDs) affect more than 3% of children and are attributable to single-gene mutations at more than 1000 loci. Traditional methods yield molecular diagnoses in less than one-half of children with NDD. Whole-genome sequencing (WGS) and whole-exome sequencing (WES) can enable diagnosis of NDD, but their clinical and cost-effectiveness are unknown. One hundred families with 119 children affected by NDD received diagnostic WGS and/or WES of parent-child trios, wherein the sequencing approach was guided by acuity of illness. Forty-five percent received molecular diagnoses. An accelerated sequencing modality, rapid WGS, yielded diagnoses in 73% of families with acutely ill children (11 of 15). Forty percent of families with children with nonacute NDD, followed in ambulatory care clinics (34 of 85), received diagnoses: 33 by WES and 1 by staged WES then WGS. The cost of prior negative tests in the nonacute patients was $19,100 per family, suggesting sequencing to be cost-effective at up to $7640 per family. A change in clinical care or impression of the pathophysiology was reported in 49% of newly diagnosed families. If WES or WGS had been performed at symptom onset, genomic diagnoses may have been made 77 months earlier than occurred in this study. It is suggested that initial diagnostic evaluation of children with NDD should include trio WGS or WES, with extension of accelerated sequencing modalities to high-acuity patients.
0
Citation499
0
Save
0

Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings

Laurel Willig et al.Apr 28, 2015
Genetic disorders and congenital anomalies are the leading causes of infant mortality. Diagnosis of most genetic diseases in neonatal and paediatric intensive care units (NICU and PICU) is not sufficiently timely to guide acute clinical management. We used rapid whole-genome sequencing (STATseq) in a level 4 NICU and PICU to assess the rate and types of molecular diagnoses, and the prevalence, types, and effect of diagnoses that are likely to change medical management in critically ill infants.We did a retrospective comparison of STATseq and standard genetic testing in a case series from the NICU and PICU of a large children's hospital between Nov 11, 2011, and Oct 1, 2014. The participants were families with an infant younger than 4 months with an acute illness of suspected genetic cause. The intervention was STATseq of trios (both parents and their affected infant). The main measures were the diagnostic rate, time to diagnosis, and rate of change in management after standard genetic testing and STATseq.20 (57%) of 35 infants were diagnosed with a genetic disease by use of STATseq and three (9%) of 32 by use of standard genetic testing (p=0·0002). Median time to genome analysis was 5 days (range 3-153) and median time to STATseq report was 23 days (5-912). 13 (65%) of 20 STATseq diagnoses were associated with de-novo mutations. Acute clinical usefulness was noted in 13 (65%) of 20 infants with a STATseq diagnosis, four (20%) had diagnoses with strongly favourable effects on management, and six (30%) were started on palliative care. 120-day mortality was 57% (12 of 21) in infants with a genetic diagnosis.In selected acutely ill infants, STATseq had a high rate of diagnosis of genetic disorders. Most diagnoses altered the management of infants in the NICU or PICU. The very high infant mortality rate indicates a substantial need for rapid genomic diagnoses to be allied with a novel framework for precision medicine for infants in NICU and PICU who are diagnosed with genetic diseases to improve outcomes.Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Human Genome Research Institute, and National Center for Advancing Translational Sciences.
0
Citation363
0
Save
0

Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice

Emily Farrow et al.Oct 17, 2011
Autosomal dominant hypophosphatemic rickets (ADHR) is unique among the disorders involving Fibroblast growth factor 23 (FGF23) because individuals with R176Q/W and R179Q/W mutations in the FGF23 176 RXXR 179 /S 180 proteolytic cleavage motif can cycle from unaffected status to delayed onset of disease. This onset may occur in physiological states associated with iron deficiency, including puberty and pregnancy. To test the role of iron status in development of the ADHR phenotype, WT and R176Q-Fgf23 knock-in (ADHR) mice were placed on control or low-iron diets. Both the WT and ADHR mice receiving low-iron diet had significantly elevated bone Fgf23 mRNA. WT mice on a low-iron diet maintained normal serum intact Fgf23 and phosphate metabolism, with elevated serum C-terminal Fgf23 fragments. In contrast, the ADHR mice on the low-iron diet had elevated intact and C-terminal Fgf23 with hypophosphatemic osteomalacia. We used in vitro iron chelation to isolate the effects of iron deficiency on Fgf23 expression. We found that iron chelation in vitro resulted in a significant increase in Fgf23 mRNA that was dependent upon Mapk. Thus, unlike other syndromes of elevated FGF23, our findings support the concept that late-onset ADHR is the product of gene–environment interactions whereby the combined presence of an Fgf23-stabilizing mutation and iron deficiency can lead to ADHR.
0
Citation345
0
Save
0

Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo

Yumie Rhee et al.Jun 28, 2011
Mice with constitutive activation of parathyroid hormone (PTH) receptor signaling in osteocytes (DMP1-caPTHR1 transgenic mice) exhibit increased bone mass and remodeling, two of the recognized skeletal actions of PTH. Moreover, similar to PTH administration, DMP1-caPTHR1 mice exhibit decreased expression of the osteocyte-derived Wnt antagonist Sost/sclerostin. We now report that PTH receptor activation also regulates in vivo and in vitro the expression of fibroblast growth factor 23 (FGF23), an osteocyte product involved in inorganic phosphate (Pi) homeostasis and bone mineralization. Whole bones and osteocytes, but not osteoblasts, from DMP1-caPTHR1 mice exhibit elevated FGF23 expression, which is corrected in double transgenic mice overexpressing Sost in osteocytes. PTH, PTH related protein (PTHrP), or a cAMP stable analog, increase FGF23 transcripts in a time- and dose-dependent manner in osteocyte-containing calvarial cell cultures. Circulating FGF23 is also elevated in DMP1-caPTHR1 mice; however, plasma Pi or renal Pi reabsorption is not altered. Furthermore, the FGF23 receptor complex comprising FGFR1 and KLOTHO is expressed in osteoblastic cells; and FGFR1, GALNT3, as well as downstream targets of FGF23 signaling, are increased in osteocytes but not in osteoblasts from DMP1-caPTHR1 mice. Thus, PTH receptor signaling has the potential to modulate the endocrine and auto/paracrine functions of osteocytes by regulating FGF23 through cAMP- and Wnt-dependent mechanisms.
0
Citation242
0
Save
0

The NSIGHT1 Randomized Controlled Trial: Rapid Whole Genome Sequencing for Accelerated Etiologic Diagnosis in Critically Ill Infants

Josh Petrikin et al.Nov 13, 2017
Abstract Importance Genetic disorders, including congenital anomalies, are a leading cause of morbidity and mortality in infants, especially in neonatal and pediatric intensive care units (NICU and PICU). While genomic sequencing is useful for diagnosis of genetic diseases, results are usually reported too late to guide inpatient management. Objective To test the hypothesis that rapid whole genome sequencing (rWGS) increases the proportion of infants in NICUs and PICUs receiving a genetic diagnosis within 28 days. Design An investigator-initiated, partially blinded, pragmatic, randomized controlled study with enrollment from October 2014 - June 2016, and follow up until December 2016. Setting A regional neonatal and pediatric intensive care unit in a tertiary referral childrens hospital. Participants Sixty five of 129 screened families with infants aged less than four months, in neonatal and pediatric intensive care units, and with illnesses of unknown etiology, completed the study. Intervention Parent and infant trio rWGS. Main Outcome and Measure The hypothesis and end-points were formulated a priori. The primary end-point was rate of genetic diagnosis within 28 days of enrollment or first standard test order. Results Twenty six female proband infants, 37 male infants, and two infants of undetermined sex were randomized to receive rWGS plus standard tests (n=32, cases) or standard tests alone (n=33, controls). The study was terminated early due to loss of equipoise: 63% (21) controls received genomic sequencing as standard tests. Nevertheless, intention to treat analysis showed the rate of genetic diagnosis within 28 days to be higher in cases (31%, ten of 32) than controls (3%, one of 33; difference, 28% [95% CI, 10% to 46%]; p=0.003). Among infants enrolled in the first 25 days of life, the rate of neonatal diagnosis was higher in cases (32%, seven of 22) than controls (0%, zero of 23; difference, 32% [95% CI, 11% to 53%]; p=0.004). Age at diagnosis (median in cases 25 days, range 14-90 days vs median in controls 130 days, range 37-451) and time to diagnosis (median in cases thirteen days, range 1-84 days vs median in controls 107 days, range 21-429 days) were significantly less in cases than controls (p=0.04). CONCLUSIONS rWGS increased the proportion of infants in a regional NICU and PICU who received a timely diagnosis of a genetic disease. Additional, adequately powered studies are needed to determine whether accelerated diagnosis is associated with improved outcomes in this setting. ClinicalTrials.gov Identifier: NCT02225522 .
0
Citation1
0
Save
31

ComprehensiveSMN1andSMN2profiling for spinal muscular atrophy analysis using long-read PacBio HiFi sequencing

Xiao Chen et al.Oct 21, 2022
Abstract Spinal muscular atrophy, a leading cause of early infant death, is caused by biallelic mutations of the SMN1 gene. Sequence analysis of SMN1 is challenging due to high sequence similarity with its paralog SMN2 . Both genes have variable copy numbers across populations. Furthermore, without pedigree information, it is impossible to identify silent carriers (2+0) with two copies of SMN1 on one chromosome and zero copies on the other. We developed Paraphase, an informatics method that identifies full-length SMN1 and SMN2 haplotypes, determines the gene copy numbers and calls phased variants using long-read PacBio HiFi data. The SMN1 and SMN2 copy number calls by Paraphase are highly concordant with orthogonal methods (99.2% for SMN1 and 100% for SMN2 ). We applied Paraphase to 438 samples across five ethnic populations to conduct a population-wide haplotype analysis of these highly homologous genes. We identified major SMN1 and SMN2 haplogroups and characterized their co-segregation through pedigree-based analyses. We identified two SMN1 haplotypes that form a common two-copy SMN1 allele in African populations. Testing positive for these two haplotypes in an individual with two copies of SMN1 gives a silent carrier risk of 88.5%, which is significantly higher than the currently used marker (1.7-3.0%). Extending beyond simple copy number testing, Paraphase can detect pathogenic variants and enable potential haplotype-based screening of silent carriers through statistical phasing of haplotypes into alleles. Future analysis of larger population data will allow identification of more diverse haplotypes and genetic markers for silent carriers.
0

De novo EIF2AK1 and EIF2AK2 variants are associated with developmental delay, leukoencephalopathy, and neurologic decompensation

Dongxue Mao et al.Sep 16, 2019
EIF2AK1 and EIF2AK2 encode members of the Eukaryotic Translation Initiation Factor 2 Alpha Kinase (EIF2AK) family that inhibits protein synthesis in response to physiologic stress conditions. EIF2AK2 is also involved in innate immune response and the regulation of signal transduction, apoptosis, cell proliferation, and differentiation. Despite these findings, human disorders associated with deleterious variants in EIF2AK1 and EIF2AK2 have not been reported. Here, we describe the identification of eight unrelated individuals with heterozygous de novo missense variants in EIF2AK1 (1/8) or EIF2AK2 (7/8). Features seen in these eight individuals include white matter alterations (8/8), developmental delay (8/8), impaired language (8/8), cognitive impairment (7/8), ataxia (6/8), dysarthria in probands with verbal ability (6/6), hypotonia (6/8), hypertonia (5/8), and involuntary movements (3/8). Individuals with EIF2AK2 variants also exhibit neurological regression in the setting of febrile illness or infection. We use mammalian cell lines and patient-derived fibroblasts to further confirm the pathogenicity of variants in these genes and found reduced kinase activity. EIF2AKs phosphorylate Eukaryotic Translation Initiation Factor 2 Subunit 1, (EIF2S1, also known as EIF2a), which then inhibits EIF2B activity. Deleterious variants in genes encoding EIF2B proteins cause childhood ataxia with central nervous system hypomyelination/vanishing white matter disease (CACH/VWM), a leukoencephalopathy characterized by neurologic regression in the setting of febrile illness and other stressors. Our findings indicate that EIF2AK2 missense variants cause a neurodevelopmental syndrome that may share phenotypic and pathogenic mechanisms with CACH/VWM.