MA
Matthew Adams
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
15
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
9

Capturing and Recreating Diverse Antibody Repertoires as Multivalent Recombinant Polyclonal Antibody Drugs

Sheila Keating et al.Aug 6, 2020
ABSTRACT Plasma-derived polyclonal antibodies are polyvalent drugs used for many important clinical indications that require modulation of multiple drug targets simultaneously, including emerging infectious disease and transplantation. However, plasma-derived drugs suffer many problems, including low potency, impurities, constraints on supply, and batch-to-batch variation. In this study, we demonstrated proofs-of-concept for a technology that uses microfluidics and molecular genomics to capture diverse mammalian antibody repertoires as multivalent recombinant drugs. These “recombinant hyperimmune” drugs comprised thousands to tens of thousands of antibodies and were derived from convalescent human donors, or vaccinated human donors or immunized mice. Here we used our technology to build a highly potent recombinant hyperimmune for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2) in less than three months. We also validated a recombinant hyperimmune for Zika virus disease that abrogates antibody-dependent enhancement (ADE) through Fc engineering. For patients with primary immune deficiency (PID), we built high potency polyvalent recombinant hyperimmunes against pathogens that commonly cause serious lung infections. Finally, to address the limitations of rabbit-derived anti-thymocyte globulin (ATG), we generated a recombinant human version and demonstrated in vivo function against graft-versus-host disease (GVHD). Recombinant hyperimmunes are a novel class of drugs that could be used to target a wide variety of other clinical applications, including cancer and autoimmunity.
9
Citation5
0
Save
93

Systematic assessment of long-read RNA-seq methods for transcript identification and quantification

Francisco Pardo-Palacios et al.Jul 27, 2023
Abstract The Long-read RNA-Seq Genome Annotation Assessment Project (LRGASP) Consortium was formed to evaluate the effectiveness of long-read approaches for transcriptome analysis. The consortium generated over 427 million long-read sequences from cDNA and direct RNA datasets, encompassing human, mouse, and manatee species, using different protocols and sequencing platforms. These data were utilized by developers to address challenges in transcript isoform detection and quantification, as well as de novo transcript isoform identification. The study revealed that libraries with longer, more accurate sequences produce more accurate transcripts than those with increased read depth, whereas greater read depth improved quantification accuracy. In well-annotated genomes, tools based on reference sequences demonstrated the best performance. When aiming to detect rare and novel transcripts or when using reference-free approaches, incorporating additional orthogonal data and replicate samples are advised. This collaborative study offers a benchmark for current practices and provides direction for future method development in transcriptome analysis.
0

Complete characterization of the human immune cell transcriptome using accurate full-length cDNA sequencing

Charles Cole et al.Sep 12, 2019
The human immune system relies on highly complex and diverse transcripts and the proteins they encode. These include transcripts for Human Leukocyte Antigen (HLA) class I and II receptors which are essential for self/non-self discrimination by the immune system as well as transcripts encoding B cell and T cell receptors (BCR and TCR) which recognize, bind, and help eliminate foreign antigens. HLA genes are highly diverse within the human population with each individual possessing two of thousands of different alleles in each of the 9 major HLA genes. Determining which combination of alleles an individual possesses for each HLA gene (high-resolution HLA-typing) is essential to establish donor-recipient compatibility in organ and bone-marrow transplantations. BCR and TCR genes in turn are generated by recombining a diverse set of gene segments on the DNA level in each maturing B and T cell, respectively. This process generates adaptive immune receptor repertoires (AIRR) of composed of unique transcripts expressed by each B and T cells. These repertoires carry a vast amount of health relevant information. Both short-read RNA-seq based HLA-typing and adaptive immune receptor repertoire sequencing currently rely heavily on our incomplete knowledge of the genetic diversity at HLA and BCR/TCR loci. Here we used our nanopore sequencing based Rolling Circle to Concatemeric Consensus (R2C2) protocol9 to generate over 10,000,000 full-length cDNA sequences at a median accuracy of 97.9%. We used this dataset to demonstrate that deep and accurate full-length cDNA sequencing can - in addition to providing isoform-level transcriptome analysis for over 9,000 loci - be used to generate accurate sequences of HLA alleles for HLA allele typing and discovery as well as detailed AIRR data for the analysis of the adaptive immune system without requiring specific knowledge of the diversity at HLA and BCR/TCR loci.
0

Generation and analysis of a mouse multi-tissue genome annotation atlas

Matthew Adams et al.Feb 1, 2024
Abstract Generating an accurate and complete genome annotation for an organism is complex because the cells within each tissue can express a unique set of transcript isoforms from a unique set of genes. A comprehensive genome annotation should contain information on what tissues express what transcript isoforms at what level. This tissue-level isoform information can then inform a wide range of research questions as well as experiment designs. Long-read sequencing technology combined with advanced full-length cDNA library preparation methods has now achieved throughput and accuracy where generating these types of annotations is achievable. Here, we show this by generating a genome annotation of the mouse (Mus musculus). We used the nanopore-based R2C2 long-read sequencing method to generate 64 million highly accurate full length cDNA consensus reads - averaging 5.4 million reads per tissue for a dozen tissues. Using the Mandalorion tool we processed these reads to generate the T issue-level A tlas of M ouse I soforms (TAMI - available at https://genome.ucsc.edu/s/vollmers/TAMI ) which we believe will be a valuable complement to conventional, manually curated reference genome annotations.
1

Illumina But With Nanopore: Sequencing Illumina libraries at high accuracy on the ONT MinION using R2C2

Alexander Zee et al.Oct 30, 2021
Abstract High-throughput short-read sequencing has taken on a central role in research and diagnostics. Hundreds of different assays exist today to take advantage of Illumina short-read sequencers, the predominant short-read sequencing technology available today. Although other short read sequencing technologies exist, the ubiquity of Illumina sequencers in sequencing core facilities, and the high capital costs of these technologies have limited their adoption. Among a new generation of sequencing technologies, Oxford Nanopore Technologies (ONT) holds a unique position because the ONT MinION, an error-prone long-read sequencer, is associated with little to no capital cost. Here we show that we can make short-read Illumina libraries compatible with the ONT MinION by using the R2C2 method to circularize and amplify the short library molecules. This results in longer DNA molecules containing tandem repeats of the original short library molecules. This longer DNA is ideally suited for the ONT MinION, and after sequencing, the tandem repeats in the resulting raw reads can be converted into high-accuracy consensus reads with similar error rates to that of the Illumina MiSeq. We highlight this capability by producing and benchmarking RNA-seq, ChIP-seq, as well as regular and target-enriched Tn5 libraries. We also explore the use of this approach for rapid evaluation of sequencing library metrics by implementing a real-time analysis workflow.