Four distinct Plasmodium species are known to regularly infect humans: Plasmodium falciparum, P. vivax, P. malariae and P. ovale. The genome sequence of P. falciparum, the cause of the most severe type of human malaria, was completed in 2002 at the same time as the mosquito vector, Anopheles gambiae. In this week's Nature, which focuses on the malaria parasite, two further malaria genome sequences are described. First that of P. vivax, which contributes significant numbers to malaria incidence in humans, though in contrast to P. falciparum, the resulting disease is usually not fatal. The genome of this rather neglected species is presented together with a comparative analysis with the genomes of other Plasmodium species. Second, we publish the genome sequence of Plasmodium knowlesi. For long regarded as a monkey malaria parasite, it is increasingly becoming recognized as the fifth human-infecting Plasmodium species. In particular, it is prevalent in South East Asia where it is often misdiagnosed as another human malaria parasite P. malariae. As a model organism P. knowlesi stands out: not only is it a primate system, useful for work on vaccines, but it can be cultured in vitro and subjected to efficient transfection and gene knockouts. In a Review Article, Elizabeth Winzeler considers the progress made towards using the genome sequence to understand basic malaria parasite biology, and in particular the work on developing rational therapeutic approaches to combat P. falciparum infections. See also the Editorial. For a comprehensive collection of resources visit Nature's past malaria specials: Malaria killer blow ; Outlook on malaria ; Malaria web focus ; Malaria Insight ; Nature Medicine focus on malaria ; Focus on malaria Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the ‘kra’ monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia1,2. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated3, and it has a close phylogenetic relationship to Plasmodium vivax4, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or ‘hypnozoite’ in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone5) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome4 and other sequenced Plasmodium genomes6,7,8. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs9, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.