KC
Kathleen Christie
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
851
h-index:
15
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Listeria phages induce Cas9 degradation to protect lysogenic genomes

Beatriz Osuna et al.Sep 30, 2019
Bacterial CRISPR-Cas systems employ RNA-guided nucleases to destroy foreign DNA. Bacteriophages, in turn, have evolved diverse 'anti-CRISPR' proteins (Acrs) to counteract acquired immunity. In Listeria monocytogenes , prophages encode 2-3 distinct anti-Cas9 proteins, with acrIIA1 always present; however, its mechanism is unknown. Here, we report that AcrIIA1 binds with high affinity to Cas9 via the catalytic HNH domain and, in Listeria , triggers Cas9 degradation. AcrIIA1 displays broad-spectrum inhibition of Type II-A and II-C Cas9s, including an additional highly-diverged Listeria Cas9. During lytic infection, AcrIIA1 is insufficient for rapid Cas9 inactivation, thus phages require an additional 'partner' Acr that rapidly blocks Cas9-DNA-binding. The AcrIIA1 N-terminal domain (AcrIIA1NTD) is dispensable for anti-CRISPR activity; instead it is required for optimal phage replication through direct transcriptional repression of the anti-CRISPR locus. AcrIIA1NTD is widespread amongst Firmicutes , can repress anti-CRISPR deployment by other phages, and has been co-opted by hosts potentially as an 'anti-anti-CRISPR.' In summary, Listeria phages utilize narrow-spectrum inhibitors of DNA binding to rapidly inactivate Cas9 in lytic growth and the broad-spectrum AcrIIA1 to stimulate Cas9 degradation for protection of the Listeria genome in lysogeny.
81

Base editing as a genetic treatment for spinal muscular atrophy

Christiano Alves et al.Jan 21, 2023
Abstract Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by mutations in the SMN1 gene. Despite the development of various therapies, outcomes can remain suboptimal in SMA infants and the duration of such therapies are uncertain. SMN2 is a paralogous gene that mainly differs from SMN1 by a C•G-to-T•A transition in exon 7, resulting in the skipping of exon 7 in most SMN2 transcripts and production of only low levels of survival motor neuron (SMN) protein. Genome editing technologies targeted to the SMN2 exon 7 mutation could offer a therapeutic strategy to restore SMN protein expression to normal levels irrespective of the patient SMN1 mutation. Here, we optimized a base editing approach to precisely edit SMN2 , reverting the exon 7 mutation via an A•T-to-G•C base edit. We tested a range of different adenosine base editors (ABEs) and Cas9 enzymes, resulting in up to 99% intended editing in SMA patient-derived fibroblasts with concomitant increases in SMN2 exon 7 transcript expression and SMN protein levels. We generated and characterized ABEs fused to high-fidelity Cas9 variants which reduced potential off-target editing. Delivery of these optimized ABEs via dual adeno-associated virus (AAV) vectors resulted in precise SMN2 editing in vivo in an SMA mouse model. This base editing approach to correct SMN2 should provide a long-lasting genetic treatment for SMA with advantages compared to current nucleic acid, small molecule, or exogenous gene replacement therapies. More broadly, our work highlights the potential of PAMless SpRY base editors to install edits efficiently and safely.