JJ
Jiyang Jiang
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(80% Open Access)
Cited by:
48
h-index:
28
/
i10-index:
58
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic Determinants of Cortical Structure (Thickness, Surface Area and Volumes) among Disease Free Adults in the CHARGE Consortium

Ivana Kolčić et al.Sep 9, 2018
Abstract Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,822 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 161 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
0
Citation24
0
Save
34

Subcortical Volume Trajectories across the Lifespan: Data from 18,605 healthy individuals aged 3-90 years

Danai Dima et al.May 7, 2020
Abstract Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalised on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine the age-related morphometric trajectories of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum early in life; the volume of the basal ganglia showed a gradual monotonic decline thereafter while the volumes of the thalamus, amygdala and the hippocampus remained largely stable (with some degree of decline in thalamus) until the sixth decade of life followed by a steep decline thereafter. The lateral ventricles showed a trajectory of continuous enlargement throughout the lifespan. Significant age-related increase in inter-individual variability was found for the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to derive risk predictions for the early identification of diverse clinical phenotypes.
0

Novel genetic variants associated with brain functional networks in 18,445 adults from the UK Biobank

Heidi Foo et al.Sep 17, 2020
Abstract This is the first study investigating the genetics of weighted functional brain network graph theory measures from 18,445 participants of the UK Biobank (44-80 years). The eighteen measures studied showed low heritability (mean h 2 SNP =0.12) and were highly genetically correlated. Genome-wide association studies for these measures observed 14 significant variants associated with strength of somatomotor and limbic networks. These intergenic variants were located near the PAX8 gene on chromosome 2. Gene-based analyses identified five significantly associated genes for five of the network measures, which have been implicated in sleep duration, neuronal differentiation/development, cancer, and susceptibility to neurodegenerative diseases. Genetic correlations with other traits were examined and significant correlations were observed with sleep measures and psychiatric symptoms. Further analysis found that somatomotor network strength was phenotypically associated with sleep duration and insomnia. Single nucleotide polymorphism (SNP) and gene level associations with functional network measures were identified, which may help uncover novel biological pathways relevant to human brain functional network integrity and diseases that affect it.
0
Citation5
0
Save
0

Brain‐age prediction: Systematic evaluation of site effects, and sample age range and size

Yuetong Yu et al.Jul 1, 2024
Abstract Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain‐age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain‐age has highlighted the need for robust and publicly available brain‐age models pre‐trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain‐age model. Here we expand this work to develop, empirically validate, and disseminate a pre‐trained brain‐age model to cover most of the human lifespan. To achieve this, we selected the best‐performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain‐age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5–90 years; 53.59% female). The pre‐trained models were tested for cross‐dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8–80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9–25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age‐bins (5–40 and 40–90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain‐age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain ( https://centilebrain.org/#/brainAGE2 ), an open‐science, web‐based platform for individualized neuroimaging metrics.
1

Age- and sex-related topological organisation of human brain functional networks and their relationship to cognition

Heidi Foo et al.Jul 26, 2021
ABSTRACT BACKGROUND Age and sex associated with changes in functional brain network topology and cognition in large population of older adults have been poorly understood. We explored this question further by examining differences in 11 resting-state graph theory measures with respect to age, sex, and their relationships with cognitive performance in 17,127 UK Biobank participants (mean=62.83±7.41 years). METHODS Brain connectivity toolbox was used to derive the graph theory measures that assessed network integration, segregation, and strength. Multiple linear regression was performed the relationship between age, sex, cognition, and network measures. Subsequently, multivariate analysis was done to further examine the joint effect of the network measures on cognitive functions. RESULTS Age was associated with an overall decrease in the effectiveness of network communication (i.e. integration) and loss of functional specialisation (i.e. segregation) of specific brain regions. Sex differences were also observed, with women showing more efficient networks which were less segregated than in men (FDR adjusted p <.05). Age-related changes were also more apparent in men than women, which suggests that men may be more vulnerable to cognitive decline with age. Interestingly, while network segregation and strength of limbic network were only nominally associated with cognitive performance, the network measures collectively were significantly associated with cognition (FDR adjusted p ≤.002). This may imply that individual measures may be inadequate to capture much of the variance in neural activity or its output and need further refinement. CONCLUSION The complexity of the functional brain organisation may be shaped by an individual’s age and sex, which ultimately may influence cognitive performance of older adults. Age and sex stratification may be used to inform clinical neuroscience research to identify older adults at risk of cognitive dysfunction.
0

Planar cell polarity pathway and development of the human visual cortex

Jean Shin et al.Aug 31, 2018
The radial unit hypothesis provides a framework for global (proliferation) and regional (distribution) expansion of the primate cerebral cortex. Using principal component analysis (PCA), we have identified cortical regions with shared variance in their surface area and cortical thickness, respectively, segmented from magnetic resonance images obtained in 23,800 participants. We then carried out meta-analyses of genome-wide association studies of the first two principal components for each phenotype. For surface area (but not cortical thickness), we have detected strong associations between each of the components and single nucleotide polymorphisms in a number of gene loci. The first (global) component was associated mainly with loci on chromosome 17 (9.5e-32 ≤ p ≤ 2.8e-10), including those detected previously as linked with intracranial volume and/or general cognitive function. The second (regional) component captured shared variation in the surface area of the primary and adjacent secondary visual cortices and showed a robust association with polymorphisms in a locus on chromosome 14 containing Disheveled Associated Activator of Morphogenesis 1 ( DAAM1 ; p =2.4e-34). DAAM1 is a key component in the planar-cell-polarity signaling pathway. In follow-up studies, we have focused on the latter finding and established that: (1) DAAM1 is highly expressed between 12th and 22nd post-conception weeks in the human cerebral cortex; (2) genes co-expressed with DAAM1 in the primary visual cortex are enriched in mitochondria-related pathways; and (3) volume of the lateral geniculate nucleus, which projects to regions of the visual cortex staining for cytochrome oxidase (a mitochondrial enzyme), correlates with the surface area of the visual cortex in major-allele homozygotes but not in carriers of the minor allele. Altogether, we speculate that, in concert with thalamocortical input to cortical subplate, DAAM1 enables migration of neurons to cytochrome-oxidase rich regions of the visual cortex, and, in turn, facilitates regional expansion of this set of cortical regions during development.
Load More