VK
Vanessa Kyriakopoulou
Author with expertise in Development and Disorders of Fetal Brain
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
3
h-index:
18
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
15

Maturational networks of human fetal brain activity reveal emerging connectivity patterns prior to ex-utero exposure

Vyacheslav Karolis et al.Jun 15, 2022
ABSTRACT A key feature of the fetal period is the rapid emergence of organised patterns of spontaneous brain activity. However, characterising this process in utero using functional MRI is inherently challenging and requires analytical methods which can capture the constituent developmental transformations. Here, we introduce a novel analytical framework, termed “maturational networks” (matnets), that achieves this by modelling functional networks as an emerging property of the developing brain. Compared to standard network analysis methods that assume consistent patterns of connectivity across development, our method incorporates age-related changes in connectivity directly into network estimation. We test its performance in a large neonatal sample, finding that the matnets approach characterises adult-like features of functional network architecture with a greater specificity than a standard group-ICA approach; for example, our approach is able to identify a nearly complete default mode network. In the in-utero brain, matnets enables us to reveal the richness of emerging functional connections and the hierarchy of their maturational relationships with remarkable anatomical specificity. We show that the associative areas play a central role within prenatal functional architecture, therefore indicating that functional connections of high-level associative areas start emerging prior to exposure to the extra-utero environment.
15
Citation3
0
Save
15

Gradient organisation of functional connectivity within resting state networks is present from 25 weeks gestation in the human fetal brain

Jucha Moore et al.Jun 27, 2023
ABSTRACT During the third trimester of human gestation, the structure and function of the fetal brain is developing rapidly, laying the foundation for its connectivity framework across the lifespan. During this juncture, resting state functional MRI can be used to identify resting state networks (RSNs) which mature across gestation to resemble canonical RSNs at full term. However, the emergence of finer grain organisation of connectivity within these RSNs in the fetal brain is unknown. Using in-utero resting state fMRI, we performed connectopic mapping analysis to explore the presence of gradients in functional connectivity organisation of 11 cortical RSNs, known as connectopic maps in fetuses aged 25-37 weeks gestation (GW). We hypothesised that, if present, development of connectopic maps would be network specific in the third trimester of gestation, such that this property would be present within the earlier maturing primary sensory and motor networks before those associated with higher association function. In keeping with this, we found smooth connectopic maps in all of the studied RSNs from 25 GW, with the most spatially consistency across gestational age in the primary sensory and motor networks. Voxel-wise permutation testing of the connectopic maps identified local clusters of voxels within networks that significantly covaried with age, specifically in multisensory processing areas, suggesting multisensory processing may be developing during this period. Our analysis shows that functional gradient organisation is already established in the fetal brain and develops throughout gestation, which has strong implications for understanding how cortical organisation subserves the emergence of behaviour in the ensuing period.
0

A bipolar taxonomy of adult human brain sulcal morphology related to timing of fetal sulcation and trans-sulcal gene expression gradients

William Snyder et al.Dec 20, 2023
Summary We developed a computational pipeline (now provided as a resource) for measuring morphological similarity between cortical surface sulci to construct a sulcal phenotype network (SPN) from each magnetic resonance imaging (MRI) scan in an adult cohort (N=34,725; 45-82 years). Networks estimated from pairwise similarities of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bipolar distribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in unimodal cortex; complex sulci were less heritable and typically located in heteromodal cortex. Aligning these results with an independent fetal brain MRI cohort (N=228; 21-36 gestational weeks), we found that linear sulci formed earlier, and the earliest and latest-forming sulci had the least between-adult variation. Using high-resolution maps of cortical gene expression, we found that linear sulcation is mechanistically underpinned by trans-sulcal gene expression gradients enriched for developmental processes.
0

Molecular signatures of cortical expansion in the human fetal brain

Gareth Ball et al.Feb 13, 2024
Abstract The third trimester of human gestation is characterised by rapid increases in brain volume and cortical surface area. A growing catalogue of cells in the prenatal brain has revealed remarkable molecular diversity across cortical areas. 1,2 Despite this, little is known about how this translates into the patterns of differential cortical expansion observed in humans during the latter stages of gestation. Here we present a new resource, μBrain, to facilitate knowledge translation between molecular and anatomical descriptions of the prenatal developing brain. Built using generative artificial intelligence, μBrain is a three-dimensional cellular-resolution digital atlas combining publicly-available serial sections of the postmortem human brain at 21 weeks gestation 3 with bulk tissue microarray data, sampled across 29 cortical regions and 5 transient tissue zones. 4 Using μBrain, we evaluate the molecular signatures of preferentially-expanded cortical regions during human gestation, quantified in utero using magnetic resonance imaging (MRI). We find that differences in the rates of expansion across cortical areas during gestation respect anatomical and evolutionary boundaries between cortical types 5 and are founded upon extended periods of upper-layer cortical neuron migration that continue beyond mid-gestation. We identify a set of genes that are upregulated from mid-gestation and highly expressed in rapidly expanding neocortex, which are implicated in genetic disorders with cognitive sequelae. Our findings demonstrate a spatial coupling between areal differences in the timing of neurogenesis and rates of expansion across the neocortical sheet during the prenatal epoch. The μBrain atlas is available from: https://garedaba.github.io/micro-brain/ and provides a new tool to comprehensively map early brain development across domains, model systems and resolution scales.
0

The developing Human Connectome Project fetal functional MRI release: Methods and data structures

Vyacheslav Karolis et al.Jun 13, 2024
Abstract Recent advances in fetal fMRI present a new opportunity for neuroscience to study functional human brain connectivity at the time of its emergence. Progress in the field however has been hampered by the lack of openly available datasets that can be exploited by researchers across disciplines to develop methods that would address the unique challenges associated with imaging and analysing functional brain in utero, such as unconstrained head motion, dynamically evolving geometric distortions, or inherently low signal-to-noise ratio. Here we describe the developing Human Connectome Project’s release of the largest open access fetal fMRI dataset to date, containing 275 scans from 255 fetuses and spanning the period of 20.86 to 38.29 post-menstrual weeks. We present a systematic approach to its pre-processing, implementing multi-band soft SENSE reconstruction, dynamic distortion corrections via phase unwrapping method, slice-to-volume reconstruction and a tailored temporal filtering model, with attention to the prominent sources of structured noise in the in utero fMRI. The dataset is accompanied with an advanced registration infrastructure, enabling group-level data fusion, and contains outputs from the main intermediate processing steps. This allows for various levels of data exploration by the imaging and neuroscientific community, starting from the development of robust pipelines for anatomical and temporal corrections to methods for elucidating the development of functional connectivity in utero. By providing a high-quality template for further method development and benchmarking, the release of the dataset will help to advance fetal fMRI to its deserved and timely place at the forefront of the efforts to build a life-long connectome of the human brain.
8

Spatiotemporal tissue maturation of thalamocortical pathways in the human fetal brain

Siân Wilson et al.Oct 25, 2022
Abstract The development of connectivity between the thalamus and maturing cortex is a fundamental process in the second half of human gestation, establishing the neural circuits that are the basis for several important brain functions. In this study, we acquired high-resolution in utero diffusion MRI from 140 fetuses as part of the Developing Human Connectome Project, to examine the emergence of thalamocortical white matter over the second to third trimester. We delineate developing thalamocortical pathways and parcellate the fetal thalamus according to its cortical connectivity using diffusion tractography. We then quantify microstructural tissue components along the tracts in the fetal compartments that are critical substrates for white matter maturation, such as the subplate and intermediate zone. We identify patterns of change in the diffusion metrics that reflect critical neurobiological transitions occurring in the second to third trimester, such as the disassembly of radial glial scaffolding and the lamination of the cortical plate. These maturational trajectories of MR signal in transient fetal compartments provide a normative reference to complement histological knowledge, facilitating future studies to establish how developmental disruptions in these regions contribute to pathophysiology.
0

Early alterations in cortical and cerebellar regional brain growth in Down Syndrome: An in-vivo fetal and neonatal MRI assessment

Prachi Patkee et al.Jun 27, 2019
Down Syndrome (DS) is the most frequent genetic cause of intellectual disability with a wide spectrum of neurodevelopmental outcomes. At present, the relationship between structural brain morphology and the spectrum of cognitive phenotypes in DS, is not well understood. This study aimed to quantify development of the fetal and neonatal brain in DS using dedicated, optimised and motion-corrected in-vivo magnetic resonance imaging (MRI). We detected deviations in development and altered regional brain growth in the fetus with DS from 21 weeks gestation, when compared to age-matched controls. Reduced cerebellar volume was apparent in the second trimester with significant alteration in cortical growth becoming evident during the third trimester. Developmental abnormalities in the cortex and cerebellum are likely substrates for later neurocognitive impairment, and ongoing studies will allow us to confirm the role of antenatal MRI as an early biomarker for subsequent cognitive ability in DS. In the era of rapidly developing technologies, it is hoped that the results of this study will assist counselling for prospective parents.
1

Objective assessment of visual attention in toddlerhood

E. Braithwaite et al.Apr 4, 2023
Abstract Visual attention is an important mechanism through which children learn about their environment, and individual differences could substantially shape later development. Eyetracking provides a sensitive and scalable tool for assessing visual attention that has potential for objective assessment of child development, but to date the majority of studies are small and replication attempts are rare. This study investigates the feasibility of a comprehensive eye-tracking assessment of visual attention and introduces a shared data resource for the scientific community. Data from eight eyetracking tasks were collected from 350 term-born (166 females) 18-month-olds recruited as neonates http://www.developingconnectome.org/ ). Analyses showed expected condition effects for seven of eight tasks ( p -values from <.001 to .04), an important indication of replicability. Consistent with some theoretical models of visual attention, structural equation modelling indicated participants’ performance could be explained by two factors representing social and non-social attention. Comprehensive eye-tracking batteries can objectively measure individual differences in core components of visual attention in large-scale toddlerhood studies. This is the first large-scale comprehensive study to present high-quality normative eye-tracking data from a large task battery in toddlers and make them freely available to the scientific community.
1

Neonatal multi-modal cortical profiles predict 18-month developmental outcomes

Daphna Fenchel et al.Sep 24, 2021
Abstract Developmental delays in infanthood often persist, turning into life-long difficulties, and coming at great cost for the individual and community. By examining the developing brain and its relation to developmental outcomes we can start to elucidate how the emergence of brain circuits is manifested in variability of infant motor, cognitive and behavioural capacities. In this study, we examined if cortical structural covariance at birth, indexing coordinated development, is related to later infant behaviour. We included 193 healthy term-born infants from the Developing Human Connectome Project (dHCP). An individual cortical connectivity matrix derived from morphological and microstructural features was computed for each subject (morphometric similarity networks, MSNs) and was used as input for the prediction of behavioural scores at 18 months using Connectome-Based Predictive Modeling (CPM). Neonatal MSNs successfully predicted social-emotional performance. Predictive edges were distributed between and within known functional cortical divisions with a specific important role for primary and posterior cortical regions. These results reveal that multi-modal neonatal cortical profiles showing coordinated maturation are related to developmental outcomes and that network organization at birth provides an early infrastructure for future functional skills.
Load More