CT
Connor Tou
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
276
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
89

Cut-and-Paste DNA Insertion with Engineered Type V-K CRISPR-associated Transposases

Connor Tou et al.Jan 9, 2022
Abstract CRISPR-associated transposases (CASTs) enable recombination-independent, multi-kilobase DNA insertions at RNA-programmed genomic locations. Type V-K CASTs offer distinct technological advantages over type I CASTs given their smaller coding size, fewer components, and unidirectional insertions. However, the utility of type V-K CASTs is hindered by a replicative transposition mechanism that results in a mixture of desired simple cargo insertions and undesired plasmid co-integrate products. Here, we overcome this limitation by engineering new CASTs with dramatically improved product purity. To do so, we compensate for the absence of the TnsA subunit in multiple type V-K CASTs by engineering a Homing Endonuclease-assisted Large-sequence Integrating CAST compleX, or HELIX system. HELIX utilizes a nicking homing endonuclease (nHE) fused to TnsB to restore the 5 “ nicking capability needed for dual-nicking of the DNA donor. By leveraging distinct features of both type V-K and type I systems, HELIX enables cut-and-paste DNA insertion with up to 99.3% simple insertion product purity, while retaining robust integration efficiencies on genomic targets. Furthermore, we demonstrate the versatility of this approach by generating HELIX systems for other CAST orthologs. We also establish the feasibility of creating a minimal, 3-component HELIX, simplifying the number of proteins that must be expressed. Together, HELIX streamlines and improves the application of CRISPR-based transposition technologies, eliminating barriers for efficient and specific RNA-guided DNA insertions.
89
Citation9
0
Save
1

Enabling AI in Synthetic Biology through Construction File Specification

Nassim Ataii et al.Jun 28, 2023
Abstract The Construction File (CF) specification establishes a standardized interface for molecular biology operations, laying a foundation for automation and enhanced efficiency in experiment design. It is implemented across three distinct software projects: PyDNA_CF_Simulator, a Python project featuring a ChatGPT plugin for interactive parsing and simulating experiments; ConstructionFileSimulator, a field-tested Java project that showcases ‘Experiment’ objects expressed as flat files; and C6-Tools, a JavaScript project integrated with Google Sheets via Apps Script, providing a user-friendly interface for authoring and simulation of CF. The CF specification not only standardizes and modularizes molecular biology operations but also promotes collaboration, automation, and reuse, significantly reducing potential errors. The potential integration of CF with artificial intelligence, particularly GPT-4, suggests innovative automation strategies for synthetic biology. While challenges such as token limits, data storage, and biosecurity remain, proposed solutions promise a way forward in harnessing AI for experiment design. This shift from human-driven design to AI-assisted workflows, steered by high-level objectives, charts a potential future path in synthetic biology, envisioning an environment where complexities are managed more effectively.
1
Paper
Citation1
0
Save
1

Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases

Joana Silva et al.Sep 13, 2023
Abstract Genome editing technologies that install diverse edits can widely enable genetic studies and new therapeutics. Here we develop click editing, a genome writing platform that couples the advantageous properties of DNA-dependent DNA polymerases with RNA-programmable nickases (e.g. CRISPR-Cas) to permit the installation of a range of edits including substitutions, insertions, and deletions. Click editors (CEs) leverage the “click”-like bioconjugation ability of HUH endonucleases (HUHes) with single stranded DNA substrates to covalently tether “click DNA” (clkDNA) templates encoding user-specifiable edits at targeted genomic loci. Through iterative optimization of the modular components of CEs (DNA polymerase and HUHe orthologs, architectural modifications, etc.) and their clkDNAs (template configurations, repair evading substitutions, etc.), we demonstrate the ability to install precise genome edits with minimal indels and no unwanted byproduct insertions. Since clkDNAs can be ordered as simple DNA oligonucleotides for cents per base, it is possible to screen many different clkDNA parameters rapidly and inexpensively to maximize edit efficiency. Together, click editing is a precise and highly versatile platform for modifying genomes with a simple workflow and broad utility across diverse biological applications.