JK
Jasper Koehorst
Author with expertise in RNA Sequencing Data Analysis
Wageningen University & Research, Delft University of Technology, Institute of Systems & Synthetic Biology
+ 2 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
381
h-index:
19
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

MEMOTE for standardized genome-scale metabolic model testing

Christian Lieven et al.Nov 13, 2023
+66
B
M
C
We acknowledge D. Dannaher and A. Lopez for their supporting work on the Angular parts of MEMOTE; resources and support from the DTU Computing Center; J. Cardoso, S. Gudmundsson, K. Jensen and D. Lappa for their feedback on conceptual details; and P. D. Karp and I. Thiele for critically reviewing the manuscript. We thank J. Daniel, T. Kristjansdottir, J. Saez-Saez, S. Sulheim, and P. Tubergen for being early adopters of MEMOTE and for providing written testimonials. J.O.V. received the Research Council of Norway grants 244164 (GenoSysFat), 248792 (DigiSal) and 248810 (Digital Life Norway); M.Z. received the Research Council of Norway grant 244164 (GenoSysFat); C.L. received funding from the Innovation Fund Denmark (project “Environmentally Friendly Protein Production (EFPro2)”); C.L., A.K., N. S., M.B., M.A., D.M., P.M, B.J.S., P.V., K.R.P. and M.H. received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 686070 (DD-DeCaF); B.G.O., F.T.B. and A.D. acknowledge funding from the US National Institutes of Health (NIH, grant number 2R01GM070923-13); A.D. was supported by infrastructural funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections; N.E.L. received funding from NIGMS R35 GM119850, Novo Nordisk Foundation NNF10CC1016517 and the Keck Foundation; A.R. received a Lilly Innovation Fellowship Award; B.G.-J. and J. Nogales received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 686585 for the project LIAR, and the Spanish Ministry of Economy and Competitivity through the RobDcode grant (BIO2014-59528-JIN); L.M.B. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 633962 for project P4SB; R.F. received funding from the US Department of Energy, Offices of Advanced Scientific Computing Research and the Biological and Environmental Research as part of the Scientific Discovery Through Advanced Computing program, grant DE-SC0010429; A.M., C.Z., S.L. and J. Nielsen received funding from The Knut and Alice Wallenberg Foundation, Advanced Computing program, grant #DE-SC0010429; S.K.’s work was in part supported by the German Federal Ministry of Education and Research (de.NBI partner project “ModSim” (FKZ: 031L104B)); E.K. and J.A.H.W. were supported by the German Federal Ministry of Education and Research (project “SysToxChip”, FKZ 031A303A); M.K. is supported by the Federal Ministry of Education and Research (BMBF, Germany) within the research network Systems Medicine of the Liver (LiSyM, grant number 031L0054); J.A.P. and G.L.M. acknowledge funding from US National Institutes of Health (T32-LM012416, R01-AT010253, R01-GM108501) and the Wagner Foundation; G.L.M. acknowledges funding from a Grand Challenges Exploration Phase I grant (OPP1211869) from the Bill & Melinda Gates Foundation; H.H. and R.S.M.S. received funding from the Biotechnology and Biological Sciences Research Council MultiMod (BB/N019482/1); H.U.K. and S.Y.L. received funding from the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries (grants NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557) from the Ministry of Science and ICT through the National Research Foundation (NRF) of Korea; H.U.K. received funding from the Bio & Medical Technology Development Program of the NRF, the Ministry of Science and ICT (NRF-2018M3A9H3020459); P.B., B.J.S., Z.K., B.O.P., C.L., M.B., N.S., M.H. and A.F. received funding through Novo Nordisk Foundation through the Center for Biosustainability at the Technical University of Denmark (NNF10CC1016517); D.-Y.L. received funding from the Next-Generation BioGreen 21 Program (SSAC, PJ01334605), Rural Development Administration, Republic of Korea; G.F. was supported by the RobustYeast within ERA net project via SystemsX.ch; V.H. received funding from the ETH Domain and Swiss National Science Foundation; M.P. acknowledges Oxford Brookes University; J.C.X. received support via European Research Council (666053) to W.F. Martin; B.E.E. acknowledges funding through the CSIRO-UQ Synthetic Biology Alliance; C.D. is supported by a Washington Research Foundation Distinguished Investigator Award. I.N. received funding from National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS) (grant P20GM125503).
0

Memote: A community driven effort towards a standardized genome-scale metabolic model test suite

Christian Lieven et al.May 6, 2020
+61
B
M
C
Abstract Several studies have shown that neither the formal representation nor the functional requirements of genome-scale metabolic models (GEMs) are precisely defined. Without a consistent standard, comparability, reproducibility, and interoperability of models across groups and software tools cannot be guaranteed. Here, we present memote ( https://github.com/opencobra/memote ) an open-source software containing a community-maintained, standardized set of me tabolic mo del te sts. The tests cover a range of aspects from annotations to conceptual integrity and can be extended to include experimental datasets for automatic model validation. In addition to testing a model once, memote can be configured to do so automatically, i.e., while building a GEM. A comprehensive report displays the model’s performance parameters, which supports informed model development and facilitates error detection. Memote provides a measure for model quality that is consistent across reconstruction platforms and analysis software and simplifies collaboration within the community by establishing workflows for publicly hosted and version controlled models.
1

Publisher Correction: MEMOTE for standardized genome-scale metabolic model testing

Christian Lieven et al.Nov 13, 2023
+66
B
M
C
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
1

An ultra-fast, proteome-wide response to the plant hormone auxin

Mark Roosjen et al.Oct 24, 2023
+6
S
A
M
SUMMARY The plant signaling molecule auxin controls growth and development through a simple nuclear pathway that regulates gene expresion. There are however several cellular and physiological responses to auxin that occur within seconds, far too rapid to be mediated by transcriptional changes, for which no molecular mechanism has yet been identified. Using a phosphoproteomic strategy in Arabidopsis thaliana roots, we identify an ultra-rapid auxin response system that targets over 1700 proteins, many within 30 seconds. Auxin response is chemically specific, requires known auxin-binding proteins, and targets various pathways. Through exploring its temporal dynamics, we infer auxin-triggered kinase-substrate networks and identify apoplastic pH changes as a target of signaling and as part of a relay mechanism. By generating a variety of phosphoproteomic datasets, integrated with structural information in a web-app, and by demonstrating analysis and inference strategies, we offer a resource to explore rapid and dynamic signaling in plants.
1
Paper
Citation4
0
Save
7

A chromosome-level assembly of the black tiger shrimp (Penaeus monodon) genome facilitates the identification of novel growth-associated genes

Tanaporn Uengwetwanit et al.Oct 24, 2023
+15
I
W
T
Abstract The black tiger shrimp ( Penaeus monodon ) is one of the most prominent farmed crustacean species with an average annual global production of 0.5 million tons in the last decade. To ensure sustainable and profitable production through genetic selective breeding programs, several research groups have attempted to generate a reference genome using short-read sequencing technology. However, the currently available assemblies lack the contiguity and completeness required for accurate genome annotation due to the highly repetitive nature of the genome and technical difficulty in extracting high-quality, high-molecular weight DNA in this species. Here, we report the first chromosome-level whole-genome assembly of P. monodon . The combination of long-read Pacific Biosciences (PacBio) and long-range Chicago and Hi-C technologies enabled a successful assembly of this first high-quality genome sequence. The final assembly covered 2.39 Gb (92.3% of the estimated genome size) and contained 44 pseudomolecules, corresponding to the haploid chromosome number. Repetitive elements occupied a substantial portion of the assembly (62.5%), highest of the figures reported among crustacean species. The availability of this high-quality genome assembly enabled the identification of novel genes associated with rapid growth in the black tiger shrimp through the comparison of hepatopancreas transcriptome of slow-growing and fast-growing shrimps. The results highlighted several gene groups involved in nutrient metabolism pathways and revealed 67 newly identified growth-associated genes. Our high-quality genome assembly provides an invaluable resource for accelerating the development of improved shrimp strain in breeding programs and future studies on gene regulations and comparative genomics.
15

FAIR Data Station for Lightweight Metadata Management & Validation of Omics Studies

Bart Nijsse et al.Oct 24, 2023
J
P
B
Abstract Background The Life sciences is an interdisciplinary field of research and one of the the biggest suppliers of scientific data. Reusing and connecting this data can uncover hidden insights and lead to new concepts, provided there is machine-actionable metadata available about the scientific experiments conducted with a degree of completeness that reflect the FAIR guiding principles. While stakeholders have embraced the FAIR principles, in practice there are a limited number of easy to adopt practical implementations available that fulfil the needs of data producers. Findings We developed the FAIR Data Station, a lightweight application written in Java, that aims to support researchers in managing research metadata according to the FAIR principles. It uses the ISA metadata framework and metadata standards to capture experimental metadata. The FAIR Data Station metadata registration workflow consists of three main modules. Based on the minimal information checklist(s) selected by the user, a web-based “form generation module” creates a standardized metadata template Excel workbook which is used as a familiar environment for offline sample metadata registration. A web-based “validation module” checks the format of the metadata recorded in the workbook. The “resource module” subsequently exports the validated set of recorded metadata into an RDF data file, enabling (cross-project) meta data searches. Conclusions Turning FAIR into reality requires the availability of easy to adopt data FAIRification workflows that provide immediate beneficial incentives to the individual researcher. As such the FAIR Data Station provides in addition to the means to correctly FAIRify sequence data, the means to build searchable databases of (local) projects and can assists in ENA metadata submission of sequence data. The FAIR Data Station is available at http://fairbydesign.nl .
15
Citation2
0
Save
0

A protocol for adding knowledge to Wikidata, a case report

Andra Waagmeester et al.May 7, 2020
+7
A
E
A
Pandemics, even more than other scientific questions, require swift integration of knowledge and identifiers. In a setting where there is a large number of loosely connected projects and initiatives, we need a common ground, also known as a "commons". Wikidata, a public knowledge graph aligned with Wikipedia, is such a commons, but Wikidata may not always have the right schema for the urgent questions. In this paper, we address this problem by showing how a data schema required for the integration can be modelled with entity schemas represented by shape expressions. As a telling example, we describe the process of aligning resources on the genomics of the SARS-CoV-2 virus and related viruses as well as how shape expressions can be defined for Wikidata helping others studying the SARS-CoV-2 pandemic. How this model can be used to make data between various resources interoperable, is demonstrated by integrating data from NCBI Taxonomy, NCBI Genes, UniProt, and WikiPathways. Based on that model, a set of automated applications or bots were written for regular updates of these sources in Wikidata and added to a platform for automatically running these updates. Although this workflow is developed and applied in the context of the SARS-CoV-2 pandemic, it was also applied to other human coronaviruses (MERS, SARS, SARS-CoV-2, Human Coronavirus NL63, Human coronavirus 229E, Human coronavirus HKU1, Human coronavirus OC4) to demonstrate its broader applicability.
0

Expected and observed genotype complexity in prokaryotes: correlation between 16S-rRNA phylogeny and protein domain content

Jasper Koehorst et al.May 7, 2020
+2
V
E
J
Background: The omnipresent 16S ribosomal RNA gene (16S-rRNA) is commonly used to identify and classify bacteria though it does not take into account the distinctive functional characteristics of taxa. We explored functional domain landscapes of over 5700 complete bacterial genomes, representing a wide coverage of the bacterial tree of life, and investigated to what extent the observed protein domain diversity correlates with the expected evolutionary diversity, using 16S-rRNA as metric for evolutionary distance. Results: Analysis of protein domains showed that 83% of the bacterial genes code for at least one of the 9722 domain classes identified. By comparing clade specific and global persistence scores, candidate horizontal gene transfer and signifying domains could be identified. 16S-rRNA and functional domain content distances were used to evaluate and compare species divergence and overall a sigmoid curve is observed. Already at close 16S-rRNA evolutionary distances, high levels of functional diversity can be observed. At a larger 16S-rRNA distance, functional differences accumulate at a relatively lower pace. Conclusions: Analysis of 16S-rRNA sequences in the same taxa suggests that, in many cases, additional means of classification are required to obtain reliable phylogenetic relationships. Whole genome protein domain class phylogenies correlate with, and complement 16S-rRNA sequence-based phylogenies. Moreover, domain-based phylogenies can be constructed over large evolutionary distances and provide an in-depth insight of the functional diversity within and among species and enables large scale functional comparisons. The increased granularity obtained paves way for new applications to better predict the relationships between genotype, physiology and ecology.
0

Organohalide-respiring Desulfoluna species isolated from marine environments

Peng Peng et al.May 7, 2020
+11
Y
T
P
The genus Desulfoluna comprises two anaerobic sulfate-reducing strains, D. spongiiphila AA1T and D. butyratoxydans MSL71T, of which only the former was shown to perform organohalide respiration (OHR). Here we isolated a third member of this genus from marine intertidal sediment, designed D. spongiiphila strain DBB. All three Desulfoluna strains harbour three reductive dehalogenase gene clusters (rdhABC) and corrinoid biosynthesis genes in their genomes. Brominated but not chlorinated aromatic compounds were dehalogenated by all three strains. The Desulfoluna strains maintained OHR in the presence of 20 mM sulfate or 20 mM sulfide, which often negatively affect OHR. Strain DBB sustained OHR with 2% oxygen in the gas phase, in line with its genetic potential for reactive oxygen species detoxification. Reverse transcription-quantitative PCR (RT-qPCR) revealed differential induction of rdhA genes in strain DBB in response to 1,4-dibromobenzene or 2,6-dibromophenol. Proteomic analysis confirmed differential expression of rdhA1 with 1,4-dibromobenzene, and revealed a possible electron transport chain from lactate dehydrogenases and pyruvate oxidoreductase to RdhA1 via menaquinones and either RdhC, or Fix complex (electron transfer flavoproteins), or Qrc complex (Type-1 cytochrome c3:menaquinone oxidoreductase).
7

Machine learning approaches to predict the plant-associated phenotype of Xanthomonas strains

Dennie Molder et al.Oct 24, 2023
J
P
W
D
The genus Xanthomonas has long been considered to consist predominantly of plant pathogens, but over the last decade there has been an increasing number of reports on non-pathogenic and endophytic members. As Xanthomonas species are prevalent pathogens on a wide variety of important crops around the world, there is a need to distinguish between these plant-associated phenotypes. To date a large number of Xanthomonas genomes have been sequenced, which enables the application of machine learning (ML) approaches on the genome content to predict this phenotype. Until now such approaches to the pathogenomics of Xanthomonas strains have been hampered by the fragmentation of information regarding strain pathogenicity over many studies. Unification of this information into a single resource was therefore considered to be an essential step. Mining of 39 papers considering both plant-associated phenotypes, allowed for a phenotypic classification of 578 Xanthomonas strains. For 65 plant-pathogenic and 53 non-pathogenic strains the corresponding genomes were available and de novo annotated for the presence of Pfam protein domains used as features to train and compare three ML classification algorithms; CART, Lasso and Random Forest. Recursive feature extraction provided further insights into the virulence enabling factors, but also yielded domains linked to traits not present in pathogenic strains.
Load More