MB
Muhamed Baraković
Author with expertise in Magnetic Resonance Imaging Applications in Medicine
University Hospital of Basel, University of Basel, Roche (Switzerland)
+ 12 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(40% Open Access)
Cited by:
20
h-index:
21
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
152

Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?

Kurt Schilling et al.Oct 24, 2023
+138
L
F
K
Abstract White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.
152
Citation16
0
Save
87

Insights from the IronTract challenge: optimal methods for mapping brain pathways from multi-shell diffusion MRI

Chiara Maffei et al.Oct 24, 2023
+48
K
G
C
Abstract Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While the technical advances spearheaded by the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data should be analyzed to maximize tractography accuracy. Over a period of two years, we have engaged the dMRI community in the IronTract Challenge, which aims to answer this question by leveraging a unique dataset. Macaque brains that have received both tracer injections and ex vivo dMRI at high spatial and angular resolution allow a comprehensive, quantitative assessment of tractography accuracy on state-of-the-art dMRI acquisition schemes. We find that, when analysis methods are carefully optimized, the HCP scheme can achieve similar accuracy as a more time-consuming, Cartesian-grid scheme. Importantly, we show that simple pre- and post-processing strategies can improve the accuracy and robustness of many tractography methods. Finally, we find that fiber configurations that go beyond crossing ( e . g ., fanning, branching) are the most challenging for tractography. The IronTract Challenge remains open and we hope that it can serve as a valuable validation tool for both users and developers of dMRI analysis methods.
87
Citation2
0
Save
1

High-frequency longitudinal white matter diffusion- & myelin-based MRI database: reliability and variability

Manon Edde et al.Oct 24, 2023
+10
M
G
M
Abstract Assessing the consistency of quantitative MRI measurements is critical for inclusion in longitudinal studies and clinical trials. Intraclass coefficient correlation and coefficient of variation were used to evaluate the different consistency aspects of diffusion- and myelinbased MRI measures. Multi-shell diffusion and inhomogeneous magnetization transfer datasets were collected from twenty healthy adults at a high-frequency of five MRI sessions. The consistency was evaluated across whole bundles and the track-profile along the bundles. The impact of the fiber populations on the consistency was also evaluated using the number of fiber orientations map. For whole and profile bundles, moderate to high reliability of diffusion and myelin measures were observed. We report higher reliability of measures for multiple fiber populations than single. The overall portrait of the most consistent measurements and bundles drawn from a wide range of MRI techniques presented here will be particularly useful for identifying reliable biomarkers capable of detecting, monitoring and predicting white matter changes in clinical applications and has the potential to inform patient-specific treatment strategies. Key points Reliability and variability are excellent to good for DWI measurements, and good to moderate for MT measures for whole bundles and along the bundles. The number of fiber populations affects the reliability and variability of the MRI measurements. The reliability and variability of MRI measurements are also bundle dependent.
0

Quantifying Remyelination Using χ-Separation in White Matter and Cortical Multiple Sclerosis Lesions

Jannis Müller et al.Sep 12, 2024
+16
A
P
J
Myelin and iron play essential roles in remyelination processes of multiple sclerosis (MS) lesions. χ-separation, a novel biophysical model applied to multiecho T2*-data and T2-data, estimates the contribution of myelin and iron to the obtained susceptibility signal. We used this method to investigate myelin and iron levels in lesion and nonlesion brain areas in patients with MS and healthy individuals.
0
Citation1
0
Save
0

Tractography-based connectomes are dominated by false-positive connections

Klaus Maier‐Hein et al.May 6, 2020
+74
J
P
K
Fiber tractography based on non-invasive diffusion imaging is at the heart of connectivity studies of the human brain. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain dataset with ground truth white matter tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. While most state-of-the-art algorithms reconstructed 90% of ground truth bundles to at least some extent, on average they produced four times more invalid than valid bundles. About half of the invalid bundles occurred systematically in the majority of submissions. Our results demonstrate fundamental ambiguities inherent to tract reconstruction methods based on diffusion orientation information, with critical consequences for the approach of diffusion tractography in particular and human connectivity studies in general.
0

Tractostorm: Rater reproducibility assessment in tractography dissection of the pyramidal tract

François Rheault et al.May 7, 2020
+23
A
A
F
Investigative studies of white matter (WM) brain structures using diffusion MRI (dMRI) tractography frequently require manual WM bundle segmentation, often called "virtual dissection". Human errors and personal decisions make these manual segmentations hard to reproduce, which have not yet been quantified by the dMRI community. The contribution of this study is to provide the first large-scale, international, multi-center variability assessment of the "virtual dissection of the pyramidal tract (PyT). Eleven (11) experts and thirteen (13) non-experts in neuroanatomy and "virtual dissection" were asked to perform 30 PyT segmentation and their results were compared using various voxel-wise and streamline-wise measures. Overall the voxel representation is always more reproducible than streamlines ($\approx$70\% and $ \approx$35\% overlap respectively) and distances between segmentations are also lower for voxel-wise than streamline-wise measures ($\approx$3mm~and~$\approx$6mm respectively). This needs to be seriously considered before using tract-based measures (e.g. bundle volume versus streamline count) for an analysis. We show and argue that future bundle segmentation protocols need to be designed to be more robust to human subjectivity. Coordinated efforts by the diffusion MRI tractography community are needed to quantify and account for reproducibility of WM bundle extraction techniques in this era of open and collaborative science.
1

Data-driven characterization and correction of the orientation dependence of magnetization transfer measures using diffusion MRI

Philippe Karan et al.Oct 24, 2023
+3
G
M
P
Abstract Purpose To characterize the orientation dependence of magnetization transfer (MT) measures in white matter (WM) and propose a first correction method for such measures. Methods A characterization method was developed using the fiber orientation obtained from diffusion MRI (dMRI) with diffusion tensor imaging (DTI) and constrained spherical deconvolution (CSD). This allowed for characterization of the orientation dependence of measures in all of WM, regardless of the number of fiber orientation in a voxel. Furthermore, a first correction method was proposed from the results of characterization, aiming at removing said orientation dependence. Both methods were tested on a 20-subject dataset and effects on tractometry results were also evaluated. Results Previous results for single-fiber voxels were reproduced and a novel characterization was produced in voxels of crossing fibers, which seems to follow trends consistent with single-fiber results. Unwanted effects of the orientation dependence on MT measures were highlighted, for which the correction method was able to produce improved results. Conclusion Encouraging results of corrected MT measures showed the importance of such correction, opening the door for future research on the topic.
0

Reducing false positives in tractography with microstructural and anatomical priors

Simona Schiavi et al.May 7, 2020
+3
M
M
S
Tractography is a family of algorithms that use diffusion-weighted magnetic resonance imaging data to reconstruct the white matter pathways of the brain. Although it has been proven to be particularly effective for studying non-invasively the neuronal architecture of the brain, recent studies have highlighted that the large incidence of false positive connections retrieved by these techniques can significantly bias any connectivity analysis. Some solutions have been proposed to overcome this issue and the ones relying on convex optimization framework showed a significant improvement. Here we propose an evolution of the Convex Optimization Modeling for Microstructure Informed Tractography (COMMIT) framework, that combines basic prior knowledge about brain anatomy with group-sparsity regularization into the optimization problem. We show that the new formulation dramatically reduces the incidence of false positives in synthetic DW-MRI data.
0

Limits to anatomical accuracy of diffusion tractography using modern approaches

Kurt Schilling et al.May 7, 2020
+39
C
V
K
Diffusion MRI fiber tractography is widely used to probe the structural connectivity of the brain, with a range of applications in both clinical and basic neuroscience. Despite widespread use, tractography has well-known pitfalls that limits the anatomical accuracy of this technique. Numerous modern methods have been developed to address these shortcomings through advances in acquisition, modeling, and computation. To test whether these advances improve tractography accuracy, we organized the ISBI 2018 3D Validation of Tractography with Experimental MRI (3D VoTEM) challenge. We made available three unique independent tractography validation datasets, a physical phantom and two ex vivo brain specimens, resulting in 176 distinct submissions from 9 research groups. By comparing results over a wide range of fiber complexities and algorithmic strategies, this challenge provides a more comprehensive assessment of tractographys inherent limitations than has been reported previously. The central results were consistent across all sub-challenges in that, despite advances in tractography methods, the anatomical accuracy of tractography has not dramatically improved in recent years. Taken together, our results independently confirm findings from decades of tractography validation studies, demonstrate inherent limitations in reconstructing white matter pathways using diffusion MRI data alone, and highlight the need for alternative or combinatorial strategies to accurately map the fiber pathways of the brain.
0

Tractography Reproducibility Challenge with Empirical Data (TraCED): The 2017 ISMRM Diffusion Study Group Challenge

Vishwesh Nath et al.May 7, 2020
+40
P
K
V
Purpose: Fiber tracking with diffusion weighted magnetic resonance imaging has become an essential tool for estimating in vivo brain white matter architecture. Fiber tracking results are sensitive to the choice of processing method and tracking criteria. Phantom studies provide concrete quantitative comparisons of methods relative to absolute ground truths, yet do not capture variabilities because of in vivo physiological factors. Methods: To date, a large-scale reproducibility analysis has not been performed for the assessment of the newest generation of tractography algorithms with in vivo data. Reproducibility does not assess the validity of a brain connection however it is still of critical importance because it describes the variability for an algorithm in group studies. The ISMRM 2017 TraCED challenge was created to fulfill the gap. The TraCED dataset consists of a single healthy volunteer scanned on two different scanners of the same manufacturer. The multi-shell acquisition included b-values of 1000, 2000 and 3000 s/mm2 with 20, 45 and 64 diffusion gradient directions per shell, respectively. Results: Nine international groups submitted 46 tractography algorithm entries. The top five submissions had high ICC > 0.88. Reproducibility is high within these top 5 submissions when assessed across sessions or across scanners. However, it can be directly attributed to containment of smaller volume tracts in larger volume tracts. This holds true for the top five submissions where they are contained in a specific order. While most algorithms are contained in an ordering there are some outliers. Conclusion: The different methods clearly result in fundamentally different tract structures at the more conservative specificity choices (i.e., volumetrically smaller tractograms). The data and challenge infrastructure remain available for continued analysis and provide a platform for comparison.