GM
Georges Mairet‐Coello
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
304
h-index:
21
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The CAMKK2-AMPK Kinase Pathway Mediates the Synaptotoxic Effects of Aβ Oligomers through Tau Phosphorylation

Georges Mairet‐Coello et al.Apr 1, 2013
+3
S
J
G
Amyloid-β 1–42 (Aβ42) oligomers are synaptotoxic for excitatory cortical and hippocampal neurons and might play a role in early stages of Alzheimer’s disease (AD) progression. Recent results suggested that Aβ42 oligomers trigger activation of AMP-activated kinase (AMPK), and its activation is increased in the brain of patients with AD. We show that increased intracellular calcium [Ca2+]i induced by NMDA receptor activation or membrane depolarization activates AMPK in a CAMKK2-dependent manner. CAMKK2 or AMPK overactivation is sufficient to induce dendritic spine loss. Conversely, inhibiting their activity protects hippocampal neurons against synaptotoxic effects of Aβ42 oligomers in vitro and against the loss of dendritic spines observed in the human APPSWE,IND-expressing transgenic mouse model in vivo. AMPK phosphorylates Tau on KxGS motif S262, and expression of Tau S262A inhibits the synaptotoxic effects of Aβ42 oligomers. Our results identify a CAMKK2-AMPK-Tau pathway as a critical mediator of the synaptotoxic effects of Aβ42 oligomers.
0

Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy

Annie Lee et al.May 14, 2019
+8
D
C
A
During the early stages of Alzheimer's disease (AD) in both mouse models and human patients, soluble forms of Amyloidβ1-42 oligomers (Aβ42o) trigger loss of excitatory synapses (synaptotoxicity) in cortical and hippocampal pyramidal neurons (PNs) prior to the formation of insoluble Aβ plaques. We observed a spatially restricted structural remodeling of mitochondria in the apical tufts of CA1 PNs dendrites in the hAPP(SWE,IND) transgenic AD mouse model (J20), corresponding to the dendritic domain receiving presynaptic inputs from the entorhinal cortex and where the earliest synaptic loss is detected in vivo. We also observed significant loss of mitochondrial biomass in human neurons derived from a new model of human ES cells where CRISPR-Cas9-mediated genome engineering was used to introduce the Swedish mutation bi-allelically (APP-SWE/SWE). Recent work uncovered that Aβ42o mediates synaptic loss by over-activating the CAMKK2-AMPK kinase dyad, and that AMPK is a central regulator of mitochondria homeostasis in non-neuronal cells. Here, we demonstrate that Aβ42o-dependent over-activation of CAMKK2-AMPK mediates synaptic loss through coordinated MFF-dependent mitochondrial fission and ULK2-dependent mitophagy in dendrites of PNs. We also found that the ability of Aβ42o-dependent mitochondrial remodeling to trigger synaptic loss requires the ability of AMPK to phosphorylate Tau on Serine 262. Our results uncover a unifying stress-response pathway triggered by Aβo and causally linking structural remodeling of dendritic mitochondria to synaptic loss.
0

A Systems-Level Framework For Drug Discovery Identifies Csf1R As A Novel Anti-Epileptic Drug Target

Prashant Srivastava et al.May 22, 2017
+13
P
J
P
The identification of mechanistically novel drug targets is highly challenging, particularly for diseases of the central nervous system. To address this problem we developed and experimentally validated a new computational approach to drug target identification that combines gene-regulatory information with a causal reasoning framework (causal reasoning analytical framework for target discovery-CRAFT). Starting from gene expression data, CRAFT provides a predictive functional genomics framework for identifying membrane receptors with a direction-specified influence over network expression. As proof-of-concept we applied CRAFT to epilepsy, and predicted the tyrosine kinase receptor Csf1R as a novel therapeutic target for epilepsy. The predicted therapeutic effect of Csf1R blockade was validated in two pre-clinical models of epilepsy using a small molecule inhibitor of Csf1R. These results suggest Csf1R blockade as a novel therapeutic strategy in epilepsy, and highlight CRAFT as a systems-level framework for predicting mechanistically new drugs and targets. CRAFT is applicable to disease settings other than epilepsy.
0

The making of a Lewy body: the role of alpha-synuclein post-fibrillization modifications in regulating the formation and the maturation of pathological inclusions.

Anne‐Laure Mahul‐Mellier et al.Dec 19, 2018
+18
A
G
A
Although converging evidence point to alpha-synuclein (a-syn) aggregation and Lewy body (LB) formation as central events in Parkinson's disease (PD), the molecular mechanisms that regulate these processes and their role in disease pathogenesis remain poorly understood. Herein, we applied an integrative biochemical, structural and imaging approach to elucidate the sequence, molecular and cellular mechanisms that regulate LB formation in primary neurons. Our results establish that post-fibrillization C-terminal truncation mediated by calpains 1 and 2 and potentially other enzymes, plays critical roles in regulating a-syn seeding, fibrillization and orchestrates many of the events associated with LB formation and maturation. These findings combined with the abundance of a-syn truncated species in LBs and pathological a-syn aggregates have significant implications for ongoing efforts to develop therapeutic strategies based on targeting the C-terminus of a-syn or proteolytic processing of this region.