TP
Thanneer Perumal
Author with expertise in Analysis of Gene Interaction Networks
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
6
(17% Open Access)
Cited by:
5
h-index:
7
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Identifying and ranking potential driver genes of Alzheimer’s Disease using multi-view evidence aggregation

Sumit Mukherjee et al.Jan 29, 2019
+6
K
T
S
ABSTRACT Motivation Late onset Alzheimers disease (LOAD) is currently a disease with no known effective treatment options. To address this, there have been a recent surge in the generation of multi-modality data (Hodes and Buckholtz, 2016; Mueller et al ., 2005) to understand the biology of the disease and potential drivers that causally regulate it. However, most analytic studies using these data-sets focus on uni-modal analysis of the data. Here we propose a data-driven approach to integrate multiple data types and analytic outcomes to aggregate evidences to support the hypothesis that a gene is a genetic driver of the disease. The main algorithmic contributions of our paper are: i) A general machine learning framework to learn the key characteristics of a few known driver genes from multiple feature-sets and identifying other potential driver genes which have similar feature representations, and ii) A flexible ranking scheme with the ability to integrate external validation in the form of Genome Wide Association Study (GWAS) summary statistics. While we currently focus on demonstrating the effectiveness of the approach using different analytic outcomes from RNA-Seq studies, this method is easily generalizable to other data modalities and analysis types. Results We demonstrate the utility of our machine learning algorithm on two benchmark multi-view datasets by significantly outperforming the baseline approaches in predicting missing labels. We then use the algorithm to predict and rank potential drivers of Alzheimers. We show that our ranked genes show a significant enrichment for SNPs associated with Alzheimers, and are enriched in pathways that have been previously associated with the disease. Availability Source code and link to all feature sets is availabile at https://github.com/Sage-Bionetworks/EvidenceAggregatedDriverRanking . Contact ben.logsdon@sagebionetworks.org
0
Citation5
0
Save
0

Meta-analysis of the human brain transcriptome identifies heterogeneity across human AD coexpression modules robust to sample collection and methodological approach

Benjamin Logsdon et al.Jan 3, 2019
+41
V
T
B
Alzheimer's disease (AD) is a complex and heterogenous brain disease that affects multiple inter-related biological processes. This complexity contributes, in part, to existing difficulties in the identification of successful disease-modifying therapeutic strategies. To address this, systems approaches are being used to characterize AD-related disruption in molecular state. To evaluate the consistency across these molecular models, a consensus atlas of the human brain transcriptome was developed through coexpression meta-analysis across the AMP-AD consortium. Consensus analysis was performed across five coexpression methods used to analyze RNA-seq data collected from 2114 samples across 7 brain regions and 3 research studies. From this analysis, five consensus clusters were identified that described the major sources of AD-related alterations in transcriptional state that were consistent across studies, methods, and samples. AD genetic associations, previously studied AD-related biological processes, and AD targets under active investigation were enriched in only three of these five clusters. The remaining two clusters demonstrated strong heterogeneity between males and females in AD-related expression that was consistently observed across studies. AD transcriptional modules identified by systems analysis of individual AMP-AD teams were all represented in one of these five consensus clusters except ROS/MAP-identified Module 109, which was specific for genes that showed the strongest association with changes in AD-related gene expression across consensus clusters. The other two AMP-AD transcriptional analyses reported modules that were enriched in one of the two sex-specific Consensus Clusters. The fifth cluster has not been previously identified and was enriched for genes related to proteostasis. This study provides an atlas to map across biological inquiries of AD with the goal of supporting an expansion in AD target discovery efforts.
0

Co-localization of Conditional eQTL and GWAS Signatures in Schizophrenia

Amanda Dobbyn et al.Apr 25, 2017
+17
J
L
A
Causal genes and variants within genome-wide association study (GWAS) loci can be identified by integrating GWAS statistics with expression quantitative trait loci (eQTL) and determining which SNPs underlie both GWAS and eQTL signals. Most analyses, however, consider only the marginal eQTL signal, rather than dissecting this signal into multiple independent eQTL for each gene. Here we show that analyzing conditional eQTL signatures, which could be important under specific cellular or temporal contexts, leads to improved fine mapping of GWAS associations. Using genotypes and gene expression levels from post-mortem human brain samples (N=467) reported by the CommonMind Consortium (CMC), we find that conditional eQTL are widespread; 63% of genes with primary eQTL also have conditional eQTL. In addition, genomic features associated with conditional eQTL are consistent with context specific (i.e. tissue, cell type, or developmental time point specific) regulation of gene expression. Integrating the Psychiatric Genomics Consortium schizophrenia (SCZ) GWAS and CMC conditional eQTL data reveals forty loci with strong evidence for co-localization (posterior probability >0.8), including six loci with co-localization of conditional eQTL. Our co-localization analyses support previously reported genes and identify novel genes for schizophrenia risk, and provide specific hypotheses for their functional follow-up. Note: Eli A. Stahl and Solveig K. Sieberts are co-corresponding authors
0

Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia

Menachem Fromer et al.May 9, 2016
+56
H
T
M
Over 100 genetic loci harbor schizophrenia associated variants, yet how these common variants confer risk is uncertain. The CommonMind Consortium has sequenced dorsolateral prefrontal cortex RNA from schizophrenia cases (n=258) and control subjects (n=279), creating the largest publicly available resource to date of gene expression and its genetic regulation; ~5 times larger than the latest release of GTEx. Using this resource, we find that ~20% of the schizophrenia risk loci have common variants that could explain regulation of brain gene expression. In five loci, these variants modulate expression of a single gene: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Experimentally altered expression of three of them, FURIN, TSNARE1, and CNTN4, perturbs the proliferation and apoptotic index of neural progenitors and leads to neuroanatomical deficits in zebrafish. Furthermore, shRNA mediated knock-down of FURIN in neural progenitor cells derived from human induced pluripotent stem cells produces abnormal neural migration. Although 4.2% of genes (N = 693) display significant differential expression between cases and controls, 44% show some evidence for differential expression. All fold changes are ≤ 1.33, and an independent cohort yields similar differential expression for these 693 genes (r = 0.58). These findings are consistent with schizophrenia being highly polygenic, as has been reported in investigations of common and rare genetic variation. Co-expression analyses identify a gene module that shows enrichment for genetic associations and is thus relevant for schizophrenia. Taken together, these results pave the way for mechanistic interpretations of genetic liability for schizophrenia and other brain diseases.
0

Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge

Solveig Sieberts et al.Jan 16, 2020
+42
M
J
S
Mobile health, the collection of data using wearables and sensors, is a rapidly growing field in health research with many applications. Deriving validated measures of disease and severity that can be used clinically or as outcome measures in clinical trials, referred to as digital biomarkers, has proven difficult. In part due to the complicated analytical approaches necessary to develop these metrics. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of Parkinson’s Disease (PD) and severity of three PD symptoms: tremor, dyskinesia and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC=0.87), as well as tremor (best AUPR=0.75), dyskinesia (best AUPR=0.48) and bradykinesia (best AUPR=0.95) severity.
0

A novel systems biology approach to evaluate mouse models of late-onset Alzheimer’s disease

Christoph Preuß et al.Jun 26, 2019
+13
A
E
C
Background Late-onset Alzheimer’s disease (LOAD) is the most common form of dementia worldwide. To date, animal models of Alzheimer’s have focused on rare familial mutations, due to a lack of frank neuropathology from models based on common disease genes. Recent multi-cohort studies of postmortem human brain transcriptomes have identified a set of 30 gene co-expression modules associated with LOAD, providing a molecular catalog of relevant endophenotypes.Results This resource enables precise gene-based alignment between new animal models and human molecular signatures of disease. Here, we describe a new resource to efficiently screen mouse models for LOAD relevance. A new NanoString nCounter® Mouse AD panel was designed to correlate key human disease processes and pathways with mRNA from mouse brains. Analysis of three mouse models based on LOAD genetics, carrying APOE4 and TREM2*R47H alleles, demonstrated overlaps with distinct human AD modules that, in turn, are functionally enriched in key disease-associated pathways. Comprehensive comparison with full transcriptome data from same-sample RNA-Seq shows strong correlation between gene expression changes independent of experimental platform.Conclusions Taken together, we show that the nCounter Mouse AD panel offers a rapid, cost-effective and highly reproducible approach to assess disease relevance of potential LOAD mouse models.