LM
Lara Mangravite
Author with expertise in Analysis of Gene Interaction Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
25
(56% Open Access)
Cited by:
5,538
h-index:
53
/
i10-index:
90
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Gene expression elucidates functional impact of polygenic risk for schizophrenia

Menachem Fromer et al.Sep 26, 2016
+55
S
P
M
The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of subjects with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, they found that ∼20% of schizophrenia loci have variants that may contribute to altered gene expression and liability. Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.
0
Citation1,027
0
Save
0

Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder

Michael Gandal et al.Dec 13, 2018
+86
E
P
M
INTRODUCTION Our understanding of the pathophysiology of psychiatric disorders, including autism spectrum disorder (ASD), schizophrenia (SCZ), and bipolar disorder (BD), lags behind other fields of medicine. The diagnosis and study of these disorders currently depend on behavioral, symptomatic characterization. Defining genetic contributions to disease risk allows for biological, mechanistic understanding but is challenged by genetic complexity, polygenicity, and the lack of a cohesive neurobiological model to interpret findings. RATIONALE The transcriptome represents a quantitative phenotype that provides biological context for understanding the molecular pathways disrupted in major psychiatric disorders. RNA sequencing (RNA-seq) in a large cohort of cases and controls can advance our knowledge of the biology disrupted in each disorder and provide a foundational resource for integration with genomic and genetic data. RESULTS Analysis across multiple levels of transcriptomic organization—gene expression, local splicing, transcript isoform expression, and coexpression networks for both protein-coding and noncoding genes—provides an in-depth view of ASD, SCZ, and BD molecular pathology. More than 25% of the transcriptome exhibits differential splicing or expression in at least one disorder, including hundreds of noncoding RNAs (ncRNAs), most of which have unexplored functions but collectively exhibit patterns of selective constraint. Changes at the isoform level, as opposed to the gene level, show the largest effect sizes and genetic enrichment and the greatest disease specificity. We identified coexpression modules associated with each disorder, many with enrichment for cell type–specific markers, and several modules significantly dysregulated across all three disorders. These enabled parsing of down-regulated neuronal and synaptic components into a variety of cell type– and disease-specific signals, including multiple excitatory neuron and distinct interneuron modules with differential patterns of disease association, as well as common and rare genetic risk variant enrichment. The glial-immune signal demonstrates shared disruption of the blood-brain barrier and up-regulation of NFkB-associated genes, as well as disease-specific alterations in microglial-, astrocyte-, and interferon-response modules. A coexpression module associated with psychiatric medication exposure in SCZ and BD was enriched for activity-dependent immediate early gene pathways. To identify causal drivers, we integrated polygenic risk scores and performed a transcriptome-wide association study and summary-data–based Mendelian randomization. Candidate risk genes—5 in ASD, 11 in BD, and 64 in SCZ, including shared genes between SCZ and BD—are supported by multiple methods. These analyses begin to define a mechanistic basis for the composite activity of genetic risk variants. CONCLUSION Integration of RNA-seq and genetic data from ASD, SCZ, and BD provides a quantitative, genome-wide resource for mechanistic insight and therapeutic development at Resource.PsychENCODE.org. These data inform the molecular pathways and cell types involved, emphasizing the importance of splicing and isoform-level gene regulatory mechanisms in defining cell type and disease specificity, and, when integrated with genome-wide association studies, permit the discovery of candidate risk genes. The PsychENCODE cross-disorder transcriptomic resource. Human brain RNA-seq was integrated with genotypes across individuals with ASD, SCZ, BD, and controls, identifying pervasive dysregulation, including protein-coding, noncoding, splicing, and isoform-level changes. Systems-level and integrative genomic analyses prioritize previously unknown neurogenetic mechanisms and provide insight into the molecular neuropathology of these disorders.
0
Citation985
0
Save
1

Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap

Michael Gandal et al.Feb 9, 2018
+83
N
J
M
Genes overlap across psychiatric disease Many genome-wide studies have examined genes associated with a range of neuropsychiatric disorders. However, the degree to which the genetic underpinnings of these diseases differ or overlap is unknown. Gandal et al. performed meta-analyses of transcriptomic studies covering five major psychiatric disorders and compared cases and controls to identify coexpressed gene modules. From this, they found that some psychiatric disorders share global gene expression patterns. This overlap in polygenic traits in neuropsychiatric disorders may allow for better diagnosis and treatment. Science , this issue p. 693
1
Citation920
0
Save
0

Comprehensive functional genomic resource and integrative model for the human brain

Daifeng Wang et al.Dec 13, 2018
+89
J
S
D
Despite progress in defining genetic risk for psychiatric disorders, their molecular mechanisms remain elusive. Addressing this, the PsychENCODE Consortium has generated a comprehensive online resource for the adult brain across 1866 individuals. The PsychENCODE resource contains ~79,000 brain-active enhancers, sets of Hi-C linkages, and topologically associating domains; single-cell expression profiles for many cell types; expression quantitative-trait loci (QTLs); and further QTLs associated with chromatin, splicing, and cell-type proportions. Integration shows that varying cell-type proportions largely account for the cross-population variation in expression (with >88% reconstruction accuracy). It also allows building of a gene regulatory network, linking genome-wide association study variants to genes (e.g., 321 for schizophrenia). We embed this network into an interpretable deep-learning model, which improves disease prediction by ~6-fold versus polygenic risk scores and identifies key genes and pathways in psychiatric disorders.
0
Citation802
0
Save
1

A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research

Philip Jager et al.Aug 7, 2018
+15
C
Y
P
Abstract We initiated the systematic profiling of the dorsolateral prefrontal cortex obtained from a subset of autopsied individuals enrolled in the Religious Orders Study (ROS) or the Rush Memory and Aging Project (MAP), which are jointly designed prospective studies of aging and dementia with detailed, longitudinal cognitive phenotyping during life and a quantitative, structured neuropathologic examination after death. They include over 3,322 subjects. Here, we outline the first generation of data including genome-wide genotypes ( n =2,090), whole genome sequencing ( n =1,179), DNA methylation ( n =740), chromatin immunoprecipitation with sequencing using an anti-Histone 3 Lysine 9 acetylation (H3K9Ac) antibody ( n =712), RNA sequencing ( n =638), and miRNA profile ( n =702). Generation of other omic data including ATACseq, proteomic and metabolomics profiles is ongoing. Thanks to its prospective design and recruitment of older, non-demented individuals, these data can be repurposed to investigate a large number of syndromic and quantitative neuroscience phenotypes. The many subjects that are cognitively non-impaired at death also offer insights into the biology of the human brain in older non-impaired individuals.
1
Citation407
0
Save
2

Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases

Mariet Allen et al.Oct 10, 2016
+31
S
B
M
Previous genome-wide association studies (GWAS), conducted by our group and others, have identified loci that harbor risk variants for neurodegenerative diseases, including Alzheimer's disease (AD). Human disease variants are enriched for polymorphisms that affect gene expression, including some that are known to associate with expression changes in the brain. Postulating that many variants confer risk to neurodegenerative disease via transcriptional regulatory mechanisms, we have analyzed gene expression levels in the brain tissue of subjects with AD and related diseases. Herein, we describe our collective datasets comprised of GWAS data from 2,099 subjects; microarray gene expression data from 773 brain samples, 186 of which also have RNAseq; and an independent cohort of 556 brain samples with RNAseq. We expect that these datasets, which are available to all qualified researchers, will enable investigators to explore and identify transcriptional mechanisms contributing to neurodegenerative diseases.
2
Citation394
0
Save
0

The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer's disease

Minghui Wang et al.Sep 11, 2018
+26
P
N
M
Abstract Alzheimer’s disease (AD) affects half the US population over the age of 85 and is universally fatal following an average course of 10 years of progressive cognitive disability. Genetic and genome-wide association studies (GWAS) have identified about 33 risk factor genes for common, late-onset AD (LOAD), but these risk loci fail to account for the majority of affected cases and can neither provide clinically meaningful prediction of development of AD nor offer actionable mechanisms. This cohort study generated large-scale matched multi-Omics data in AD and control brains for exploring novel molecular underpinnings of AD. Specifically, we generated whole genome sequencing, whole exome sequencing, transcriptome sequencing and proteome profiling data from multiple regions of 364 postmortem control, mild cognitive impaired (MCI) and AD brains with rich clinical and pathophysiological data. All the data went through rigorous quality control. Both the raw and processed data are publicly available through the Synapse software platform.
0
Citation382
0
Save
1

Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions

Solveig Sieberts et al.Oct 12, 2020
+100
S
L
S
Abstract The availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis- eQTL meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts (identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 samples (identifying 874,836 significant eQTL for >10,000 genes). We find substantially improved power in the meta-analysis over individual cohort analyses, particularly in comparison to the Genotype-Tissue Expression (GTEx) Project eQTL. Additionally, we observed differences in eQTL patterns between cerebral and cerebellar brain regions. We provide these brain eQTL as a resource for use by the research community. As a proof of principle for their utility, we apply a colocalization analysis to identify genes underlying the GWAS association peaks for schizophrenia and identify a potentially novel gene colocalization with lncRNA RP11-677M14.2 (posterior probability of colocalization 0.975).
1
Citation305
0
Save
0

Indicators of retention in remote digital health studies: a cross-study evaluation of 100,000 participants

Abhishek Pratap et al.Feb 17, 2020
+11
P
L
A
Digital technologies such as smartphones are transforming the way scientists conduct biomedical research. Several remotely conducted studies have recruited thousands of participants over a span of a few months allowing researchers to collect real-world data at scale and at a fraction of the cost of traditional research. Unfortunately, remote studies have been hampered by substantial participant attrition, calling into question the representativeness of the collected data including generalizability of outcomes. We report the findings regarding recruitment and retention from eight remote digital health studies conducted between 2014-2019 that provided individual-level study-app usage data from more than 100,000 participants completing nearly 3.5 million remote health evaluations over cumulative participation of 850,000 days. Median participant retention across eight studies varied widely from 2-26 days (median across all studies = 5.5 days). Survival analysis revealed several factors significantly associated with increase in participant retention time, including (i) referral by a clinician to the study (increase of 40 days in median retention time); (ii) compensation for participation (increase of 22 days, 1 study); (iii) having the clinical condition of interest in the study (increase of 7 days compared with controls); and (iv) older age (increase of 4 days). Additionally, four distinct patterns of daily app usage behavior were identified by unsupervised clustering, which were also associated with participant demographics. Most studies were not able to recruit a sample that was representative of the race/ethnicity or geographical diversity of the US. Together these findings can help inform recruitment and retention strategies to enable equitable participation of populations in future digital health research.
0

Identifying and ranking potential driver genes of Alzheimer’s Disease using multi-view evidence aggregation

Sumit Mukherjee et al.Jan 29, 2019
+6
K
T
S
ABSTRACT Motivation Late onset Alzheimers disease (LOAD) is currently a disease with no known effective treatment options. To address this, there have been a recent surge in the generation of multi-modality data (Hodes and Buckholtz, 2016; Mueller et al ., 2005) to understand the biology of the disease and potential drivers that causally regulate it. However, most analytic studies using these data-sets focus on uni-modal analysis of the data. Here we propose a data-driven approach to integrate multiple data types and analytic outcomes to aggregate evidences to support the hypothesis that a gene is a genetic driver of the disease. The main algorithmic contributions of our paper are: i) A general machine learning framework to learn the key characteristics of a few known driver genes from multiple feature-sets and identifying other potential driver genes which have similar feature representations, and ii) A flexible ranking scheme with the ability to integrate external validation in the form of Genome Wide Association Study (GWAS) summary statistics. While we currently focus on demonstrating the effectiveness of the approach using different analytic outcomes from RNA-Seq studies, this method is easily generalizable to other data modalities and analysis types. Results We demonstrate the utility of our machine learning algorithm on two benchmark multi-view datasets by significantly outperforming the baseline approaches in predicting missing labels. We then use the algorithm to predict and rank potential drivers of Alzheimers. We show that our ranked genes show a significant enrichment for SNPs associated with Alzheimers, and are enriched in pathways that have been previously associated with the disease. Availability Source code and link to all feature sets is availabile at https://github.com/Sage-Bionetworks/EvidenceAggregatedDriverRanking . Contact ben.logsdon@sagebionetworks.org
0
Citation5
0
Save
Load More