Abstract Two-component, self-assembling nanoparticles represent a versatile platform for multivalent presentation of viral antigens. Nanoparticles of different sizes and geometries can be designed and combined with appropriate antigens to fit the requirements of different immunization strategies. Here, we describe detailed antigenic, structural, and functional characterization of computationally designed tetrahedral, octahedral, and icosahedral nanoparticle immunogens displaying trimeric HIV envelope glycoprotein (Env) ectodomains. Env trimers, based on subtype A (BG505) or consensus group M (ConM) sequences and engineered with SOSIP stabilizing mutations, were fused to the underlying trimeric building block of each nanoparticle. Initial screening yielded one icosahedral and two tetrahedral nanoparticle candidates, capable of presenting twenty or four copies of the Env trimer. A number of analyses, including detailed structural characterization by cryo-EM, demonstrated that the nanoparticle immunogens possessed the intended structural and antigenic properties. Comparing the humoral responses elicited by ConM-SOSIP trimers presented on a two-component tetrahedral nanoparticle to the corresponding soluble protein revealed that multivalent presentation increased the proportion of the overall antibody response directed against autologous neutralizing Ab epitopes present on the ConM-SOSIP trimers. Author Summary Protein constructs based on soluble ectodomains of HIV glycoprotein (Env) trimers are the basis of many current HIV vaccine platforms. Multivalent antigen display is one strategy applied to improve the immunogenicity of different subunit vaccine candidates. Here, we describe and comprehensively evaluate a library of de novo designed, protein nanoparticles of different geometries for their ability to present trimeric Env antigens. We found three nanoparticle candidates that can stably incorporate model Env trimer on their surface while maintaining its structure and antigenicity. Immunogenicity of the designed nanoparticles is assessed in vitro and in vivo . In addition to introducing a novel set of reagents for multivalent display of Env trimers, this work provides both guiding principles and a detailed experimental roadmap for the generation, characterization, and optimization of Env-presenting, self-assembling nanoparticle immunogens.