WY
Weitong Yao
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
29
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
33

Effect of SARS-CoV-2 spike mutations on animal ACE2 usage and in vitro neutralization sensitivity

Weitong Yao et al.Jan 28, 2021
The emergence of SARS-CoV-2 variants poses greater challenges to the control of COVID-19 pandemic. Here, we parallelly investigated three important characteristics of seven SARS-CoV-2 variants, including two mink-associated variants, the B.1.617.1 variant, and the four WHO-designated variants of concerns (B.1.1.7, B.1.351, P.1, and B.1.617.2). We first investigated the ability of these variants to bind and use animal ACE2 orthologs as entry receptor. We found that, in contrast to a prototype variant, the B.1.1.7, B.1.351, and P.1 variants had significantly enhanced affinities to cattle, pig, and mouse ACE2 proteins, suggesting increased susceptibility of these species to these SARS-CoV-2 variants. We then evaluated in vitro neutralization sensitivity of these variants to four monoclonal antibodies in clinical use. We observed that all the variants were partially or completely resistant against at least one of the four tested antibodies, with B.1.351 and P.1 showing significant resistance to three of them. As ACE2-Ig is a broad-spectrum anti-SARS-CoV-2 drug candidate, we then evaluated in vitro neutralization sensitivity of these variants to eight ACE2-Ig constructs previously described in three different studies. All the SARS-CoV-2 variants were efficiently neutralized by these ACE2-Ig constructs. Interestingly, compared to the prototype variant, most tested variants including the variants of concern B.1.1.7, B.1.351, P.1, and B.1.617.2 showed significantly increased (up to ~15-fold) neutralization sensitivity to ACE2-Ig constructs that are not heavily mutated in the spike-binding interface of the soluble ACE2 domain, suggesting that SARS-CoV-2 evolves toward better utilizing ACE2, and that ACE2-Ig is an attractive drug candidate for coping with SARS-CoV-2 mutations.
33
Citation27
0
Save
39

Broadly effective ACE2 decoy proteins protect mice from lethal SARS-CoV-2 infection

Mengjia Lu et al.Feb 23, 2023
Abstract As SARS-CoV-2 variants have been causing increasingly serious drug resistance problem, development of broadly effective and hard-to-escape anti-SARS-CoV-2 agents is in urgent need. Here we describe further development and characterization of two SARS-CoV-2 receptor decoy proteins, ACE2-Ig-95 and ACE2-Ig-105/106. We found that both proteins had potent and robust in vitro neutralization activities against diverse SARS-CoV-2 variants including Omicron, with an average IC 50 of up to 37 pM. In a stringent lethal SARS-CoV-2 infection mouse model, both proteins lowered lung viral load by up to ∼1000 fold, prevented the emergence of clinical signs in >75% animals, and increased animal survival rate from 0% (untreated) to >87.5% (treated). These results demonstrate that both proteins are good drug candidates for protecting animals from severe COVID-19. In a head-to-head comparison of these two proteins with five previously-described ACE2-Ig constructs, we found that two of these constructs, each carrying five surface mutations in the ACE2 region, had partial loss of neutralization potency against three SARS-CoV-2 variants. These data suggest that extensively mutating ACE2 residues near the RBD-binding interface should be avoided or performed with extra caution. Further, we found that both ACE2-Ig-95 and ACE2-Ig-105/106 could be produced to gram/liter level, demonstrating the developability of them as biologic drug candidates. Stress-condition stability test of them further suggests that more studies are required in the future to improve the stability of these proteins. These studies provide useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses. Abstract Importance Engineering soluble ACE2 proteins that function as a receptor decoy to block SARS-CoV-2 infection is a very attractive approach to broadly effective and hard-to-escape anti-SARS-CoV-2 agents. This study here describes development of two antibody-like soluble ACE2 proteins that broadly block diverse SARS-CoV-2 variants including Omicron. In a stringent COVID-19 mouse model, both proteins successfully protected >87.5% animals from lethal SARS-CoV-2 infection. In addition, a head-to-head comparison of the two constructs developed in this study with five previously-described ACE2 decoy constructs were performed here. Two previously-described constructs with relatively more ACE2-surface mutations were found with less robust neutralization activities against diverse SARS-CoV-2 variants. Further, the developability of the two proteins as biologic drug candidates was also assessed here. This study provides two broadly anti-SARS-CoV-2 drug candidates and useful insight into critical factors for engineering and preclinical development of ACE2 decoy as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses. Tweet Two antibody-like ACE2 decoy proteins could block diverse SARS-CoV-2 variants and prevent animals from severe COVID-19.
39
Citation2
0
Save
0

Characterization of the Pathogenic Features of Multiple SARS‐CoV‐2 Pandemic Strains in Different Mouse Models

Huize Sun et al.Nov 1, 2024
ABSTRACT Elucidating the detailed features of emerging SARS‐CoV‐2 strains both in vitro and in vivo is indispensable for the development of effective vaccines or drugs against viral infection. We thoroughly characterized the virological and pathogenic features of eight different pandemic SARS‐CoV‐2 strains, from the WT strain to current circulating sublineage EG.5.1, both in vitro and in vivo. Besides detailed virological features observed in Vero E6 cells, the Omicron variants, from BA.1 to EG.5.1, exhibited enhanced infectious effects to upper respiratory tract in K18 human angiotensin‐converting enzyme (ACE2) (K18 hACE2) transgenic mice. Both XBB.1.9.1 and EG.5.1 presented stronger tropism to brain, which could be the main reason for the increased lethal effects on mice. In addition, the pathogenesis comparisons among all these viruses in C57BL/6JGpt mice indicated that Omicron variant BA.1 and two new sublineages XBB.1.9.1 and EG.5.1 possessed dual tropisms to both human and mice, which were further confirmed by subsequent bioinformatic analyses and actual affinity comparison between viral RBDs and mouse or human receptor ACE2. Furthermore, the immunocompromised BKS‐db mice were found to be more susceptible to Omicron strains compared to C57BL/6JGpt mice, which revealed that viral infectivity was determined by both its affinity to the host receptor and host immunocompetence. Thus, this study not only contributes to a systematic understanding of the pathogenic features of SARS‐CoV‐2 in mice, but also provides new insights to combat potential future surges of new SARS‐CoV‐2 variants.