OK
Olena Kuksenko
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
641
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
47

Single-nucleus cross-tissue molecular reference maps to decipher disease gene function

Gökçen Eraslan et al.Jul 19, 2021
Abstract Understanding the function of genes and their regulation in tissue homeostasis and disease requires knowing the cellular context in which genes are expressed in tissues across the body. Single cell genomics allows the generation of detailed cellular atlases in human tissues, but most efforts are focused on single tissue types. Here, we establish a framework for profiling multiple tissues across the human body at single-cell resolution using single nucleus RNA-Seq (snRNA-seq), and apply it to 8 diverse, archived, frozen tissue types (three donors per tissue). We apply four snRNA-seq methods to each of 25 samples from 16 donors, generating a cross-tissue atlas of 209,126 nuclei profiles, and benchmark them vs . scRNA-seq of comparable fresh tissues. We use a conditional variational autoencoder (cVAE) to integrate an atlas across tissues, donors, and laboratory methods. We highlight shared and tissue-specific features of tissue-resident immune cells, identifying tissue-restricted and non-restricted resident myeloid populations. These include a cross-tissue conserved dichotomy between LYVE1- and HLA class II-expressing macrophages, and the broad presence of LAM-like macrophages across healthy tissues that is also observed in disease. For rare, monogenic muscle diseases, we identify cell types that likely underlie the neuromuscular, metabolic, and immune components of these diseases, and biological processes involved in their pathology. For common complex diseases and traits analyzed by GWAS, we identify the cell types and gene modules that potentially underlie disease mechanisms. The experimental and analytical frameworks we describe will enable the generation of large-scale studies of how cellular and molecular processes vary across individuals and populations.
47
Citation27
0
Save
0

Shuffle-Seq: En masse combinatorial encoding for n-way genetic interaction screens

Atray Dixit et al.Dec 2, 2019
Genetic interactions, defined as the non-additive phenotypic impact of combinations of genes, are a hallmark of the mapping from genotype to phenotype. However, genetic interactions remain challenging to systematically test given the massive number of possible combinations. In particular, while large-scale screening efforts in yeast have quantified pairwise interactions that affect cell viability, or synthetic lethality, between all pairs of genes as well as for a limited number of three-way interactions, it has previously been intractable to perform the large screens needed to comprehensively assess interactions in a mammalian genome. Here, we develop Shuffle-Seq, a scalable method to assay genetic interactions. Shuffle-Seq leverages the co-inheritance of genetically encoded barcodes in dividing cells and can scale in proportion to sequencing throughput. We demonstrate the technical validity of Shuffle-Seq and apply it to screening for mechanisms underlying drug resistance in a melanoma model. Shuffle-Seq should allow screens of hundreds of millions of combinatorial perturbations and facilitate the understanding of genetic dependencies and drug sensitivities.
0

Multiplexed single-cell profiling of post-perturbation transcriptional responses to define cancer vulnerabilities and therapeutic mechanism of action

James McFarland et al.Dec 8, 2019
Assays to study cancer cell responses to pharmacologic or genetic perturbations are typically restricted to using simple phenotypic readouts such as proliferation rate or the expression of a marker gene. Information-rich assays, such as gene-expression profiling, are generally not amenable to efficient profiling of a given perturbation across multiple cellular contexts. Here, we developed MIX-Seq, a method for multiplexed transcriptional profiling of post-perturbation responses across a mixture of samples with single-cell resolution, using SNP-based computational demultiplexing of single-cell RNA-sequencing data. We show that MIX-Seq can be used to profile responses to chemical or genetic perturbations across pools of 100 or more cancer cell lines, and combine it with Cell Hashing to further multiplex additional experimental conditions, such as multiple post-treatment time points or drug doses. Analyzing the high-content readout of scRNA-seq reveals both shared and context-specific transcriptional response components that can identify drug mechanism of action and can be used to predict long-term cell viability from short-term transcriptional responses to treatment.