PS
Paul Seidler
Author with expertise in Endoplasmic Reticulum Stress and Unfolded Protein Response
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
41
h-index:
16
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
19

Inhibition of amyloid formation of the Nucleoprotein of SARS-CoV-2

Einav Tayeb-Fligelman et al.Mar 5, 2021
+21
C
X
E
The SARS-CoV-2 Nucleoprotein (NCAP) functions in RNA packaging during viral replication and assembly. Computational analysis of its amino acid sequence reveals a central low-complexity domain (LCD) having sequence features akin to LCDs in other proteins known to function in liquid-liquid phase separation. Here we show that in the presence of viral RNA, NCAP, and also its LCD segment alone, form amyloid-like fibrils when undergoing liquid-liquid phase separation. Within the LCD we identified three 6-residue segments that drive amyloid fibril formation. We determined atomic structures for fibrils formed by each of the three identified segments. These structures informed our design of peptide inhibitors of NCAP fibril formation and liquid-liquid phase separation, suggesting a therapeutic route for Covid-19.Atomic structures of amyloid-driving peptide segments from SARS-CoV-2 Nucleoprotein inform the development of Covid-19 therapeutics.
19
Citation24
0
Save
28

CryoEM reveals how the small molecule EGCG binds to Alzheimer’s brain-derived tau fibrils and initiates fibril disaggregation

Paul Seidler et al.May 30, 2020
+8
M
D
P
Abstract EGCG, the most abundant favanol in green tea, is one of the few natural compounds known to inhibit amyloid fibril formation of proteins associated with neurodegeneration, and to disaggregate amyloid fibrils. Little is known of the mechanism of molecular action of EGCG, or how it or other small molecules interact with amyloid fibrils. Here we present a 3.9 Å resolution cryoEM structure that reveals the site of EGCG binding to Alzheimer’s disease (AD) brain-derived tau fibrils. The structure suggests that EGCG disaggregates fibrils of AD-tau by wedging into a cleft that is at the interface of two protofilaments of the paired helical filament, and by causing charge repulsions between tau layers of the fibril. In support of this, we observe separation of the protofilaments that EGCG wedges between, and accompanying displacement of the adjacent β-helix domain. By resolving the site of EGCG binding, our structure defines a pharmacophore-like cleft in the AD-tau fibril that will be of use for the discovery of surrogate compounds with more desirable drug-like properties.
28
Citation15
0
Save
0

Oolonghomobisflavans fromCamellia sinensisdisaggregate tau fibrils across Alzheimer’s disease models

Chatrawee Duangjan et al.Mar 1, 2024
S
P
X
C
Alzheimer's disease (AD) is a common debilitating neurodegenerative disease with limited treatment options. Amyloid-β (Aβ) and tau fibrils are well-established hallmarks of AD, which can induce oxidative stress, neuronal cell death, and are linked to disease pathology. Here, we describe the effects of Oolonghomobisflavan A (OFA) and Oolonghomobisflavan B (OFB) on tau fibril disaggregation and prionogenic seeding. Transcriptomic analysis of OF-treated animals reveals the induction of a proteostasis-enhancing and health-promoting signature. OFA treatment reduced the burden of Tau protein aggregation in a
0
Citation1
0
Save
1

The SARS-CoV-2 nucleocapsid protein preferentially binds long and structured RNAs

Christen Tai et al.Dec 27, 2021
+8
S
E
C
ABSTRACT The SARS-CoV-2 nucleocapsid protein (NCAP) functions in viral RNA genome packaging, virion assembly, RNA synthesis and translation, and regulation of host immune response. RNA-binding is central to these processes. Little is known how NCAP selects its binding partners in the myriad of host and viral RNAs. To address this fundamental question, we employed electrophoresis mobility shift and competition assays to compare NCAP binding to RNAs that are of SARS-CoV-2 vs. non-SARS-CoV-2, long vs. short, and structured vs. unstructured. We found that although NCAP can bind all RNAs tested, it primarily binds structured RNAs, and their association suppresses strong interaction with single-stranded RNAs. NCAP prefers long RNAs, especially those containing multiple structures separated by single-stranded linkers that presumably offer conformational flexibility. Additionally, all three major regions of NCAP bind RNA, including the low complexity domain and dimerization domain that promote formation of NCAP oligomers, amyloid fibrils and liquid-liquid phase separation. Combining these observations, we propose that NCAP-NCAP interactions that mediate higher-order structures during packaging also drive recognition of the genomic RNA and call this mechanism recognition-by-packaging. This study provides a biochemical basis for understanding the complex NCAP-RNA interactions in the viral life cycle and a broad range of similar biological processes. HIGHLIGHTS NCAP primarily binds structured RNAs. NCAP prefers multiple RNA structures separated by single-stranded linkers. NCAP favors binding to long RNAs.
1
Citation1
0
Save
2

Selective inhibition of hsp90 paralogs: Structure and binding studies uncover the role of helix 1 in Grp94-selective ligand binding

Nanette Que et al.Aug 1, 2023
+2
W
P
N
Abstract Grp94 is the endoplasmic reticulum paralog of the hsp90 family of chaperones, which have been targeted for therapeutic intervention via their highly conserved ATP binding sites. The design of paralog-selective inhibitors relies on understanding the structural elements that mediate each paralog’s response to inhibitor binding. Here, we determined the structures of Grp94 and Hsp90 in complex with the Grp94-selective inhibitor PU-H36, and of Grp94 with the non-selective inhibitor PU-H71. In Grp94, the 8-aryl moiety of PU-H36 is inserted into Site 2, a conditionally available side pocket, but in Hsp90 it occupies Site 1, a non-selective side pocket that is accessible in all hsp90 paralogs. The structure of Grp94 in complex with the non-selective PU-H71 shows only Site 1 binding. Large conformational shifts involving helices 1, 4 and 5 of the N-terminal domain of Grp94 are associated with the engagement of the Site 2 pocket for ligand binding. To understand the origins of Site 2 pocket engagement, we tested the binding of Grp94-selective ligands to chimeric Grp94/Hsp90 constructs. These studies show that helix 1 of the Grp94 N-terminal domain is the discriminating element that allows for remodeling of the ATP binding pocket and exposure of the Site 2 selective pocket.
1

Improving the solubility of pseudo-hydrophobic Alzheimer’s Disease medicinal chemicals through co-crystal formulation

Traniello J.F.A. et al.Apr 28, 2023
+13
I
X
T
Natural products are ligands and potential inhibitors of Alzheimer's disease (AD) tau. Dihydromyricetin (DHM) is a CNS active natural product. Despite having signature polyphenolic character, DHM is ostensibly hydrophobic owing to intermolecular hydrogen bonds that shield hydrophilic phenols. Our research shows DHM becomes ionized at near-neutral pH allowing formulation of salts with transformed solubility. The MicroED co-crystal structure with trolamine reveals DHM salts as metastable solids with unlocked hydrogen bonding and a thermodynamic bent to solubilize in water. All salt formulations show better inhibitory activity against AD tau than the non-salt form, with efficacies correlating to enhanced solubilities. These results underscore the role of structural chemistry in guiding selection of solubilizing agents for chemical formulation. We propose DHM salts are appropriate formulations for research as dietary supplements to promote healthy aging by combating protein misfolding. Additionally, DHM is a suitable lead for medicinal chemistry and possible development of CNS pharmaceuticals.