PR
Ping Ren
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
35
h-index:
15
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
10

Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617

Lei Peng et al.Dec 24, 2021
+21
P
M
L
COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identified two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generated a bispecific antibody. Lead antibodies showed strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solved several cryo-EM structures at ∼3 Å resolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and revealed distinct epitopes, binding patterns, and conformations. The lead clones also showed potent efficacy in vivo against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generated and characterized a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.
10
Citation25
0
Save
7

Heterotypic vaccination responses against SARS-CoV-2 Omicron BA.2

Zhenhao Fang et al.Mar 23, 2022
+9
Q
L
Z
Abstract The Omicron sub-lineage BA.2 of SARS-CoV-2 has recently become dominant across many areas in the world in the on-going waves of COVID-19. Compared to the ancestral/wild-type (WT) virus, Omicron lineage variants, both BA.1 and BA.2, contain high number of mutations, especially in the spike protein, causing significant immune escape that leads to substantial reduction of vaccine and antibody efficacy. Because of this antigenic drift, BA.2 exhibited differential resistance profile to monoclonal antibodies than BA.1. Thus, it is important to understand whether the immunity elicited by currently available vaccines are effective against the BA.2 subvariant. We directly tested the heterotypic vaccination responses against Omicron BA.2, using vaccinated serum from animals receiving WT- and variant-specific mRNA vaccine in lipid nanoparticle (LNP) formulations. Omicron BA.1 and BA.2 antigen showed similar reactivity to serum antibodies elicited by two doses of WT, B.1.351 and B.1.617 LNP-mRNAs. Neutralizing antibody titers of B.1.351 and B.1.617 LNP-mRNA were ~2-fold higher than that of WT LNP-mRNA. Both homologous boosting with WT LNP-mRNA and heterologous boosting with BA.1 LNP-mRNA substantially increased waning immunity of WT vaccinated mice against both BA.1 and BA.2 subvariants. The BA.1 LNP-mRNA booster was ~3-fold more efficient than WT LNP-mRNA at elevating neutralizing antibody titers of BA.2. Together, these data provided a direct preclinical evaluation of WT and variant-specific LNP-mRNAs in standard two-dose and as boosters against BA.1 and BA.2 subvariants.
7
Citation4
0
Save
9

Function and Cryo-EM structures of broadly potent bispecific antibodies against multiple SARS-CoV-2 Omicron sublineages

Ping Ren et al.Aug 10, 2022
+9
L
Y
P
The SARS-CoV-2 variant, Omicron (B.1.1.529), rapidly swept the world since its emergence. Compared with previous variants, Omicron has a high number of mutations, especially those in its spike glycoprotein that drastically dampen or abolish the efficacy of currently available vaccines and therapeutic antibodies. Several major sublineages of Omicron evolved, including BA.1, BA.1.1, BA.2, BA.2.12.1, BA.3, BA.4/5, and BA.2.75, which rapidly changing the global and regional landscape of the pandemic. Although vaccines are available, therapeutic antibodies remain critical for infected and especially hospitalized patients. To address this, we have designed and generated a panel of human/humanized therapeutic bispecific antibodies against Omicron and its sub-lineage variants, with activity spectrum against other lineages. Among these, the top clone CoV2-0213 has broadly potent activities against multiple SARS-CoV-2 ancestral and Omicron lineages, including BA.1, BA.1.1, BA.2, BA.2.12.1, BA.3, BA.4/5, and BA.2.75. We have solved the cryo-EM structure of the lead bi-specific antibody CoV-0213 and its major Fab arm MB.02. Three-dimensional structural analysis shows distinct epitope of antibody - spike receptor binding domain (RBD) interactions and reveals that both Fab fragments of CoV2-0213 can simultaneously target one single spike RBD or two adjacent ones in the same spike trimer, further corroborating its mechanism of action. CoV2-0213 represents a unique and potent broad-spectrum SARS-CoV-2 neutralizing bispecific antibody (nbsAb) against the currently circulating major Omicron variants (BA.1, BA.1.1, BA.2, BA.2.12.1, BA.2.75, BA.3, and BA.4/5). CoV2-0213 is primarily human and ready for translational testing as a countermeasure against the ever-evolving pathogen.
9
Citation4
0
Save
5

Potent and specific human monoclonal antibodies against SARS-CoV-2 Omicron variant by rapid mRNA immunization of humanized mice

Ping Ren et al.Mar 18, 2022
+9
Z
L
P
Abstract The Omicron variant (B.1.1.529) of SARS-CoV-2 rapidly becomes dominant globally. Its extensive mutations confer severe efficacy reduction to most of existing antibodies or vaccines. Here, we developed RAMIHM , a highly efficient strategy to generate fully human monoclonal antibodies (mAbs), directly applied it with Omicron-mRNA immunization, and isolated three potent and specific clones against Omicron. Rapid mRNA immunization elicited strong anti-Omicron antibody response in humanized mice, along with broader anti-coronavirus activity. Customized single cell BCR sequencing mapped the clonal repertoires. Top-ranked clones collectively from peripheral blood, plasma B and memory B cell populations showed high rate of Omicron-specificity (93.3%) from RAMIHM-scBCRseq. Clone-screening identified three highly potent neutralizing antibodies that have low nanomolar affinity for Omicron RBD, and low ng/mL level IC50 in neutralization, more potent than majority of currently approved or authorized clinical RBD-targeting mAbs. These lead mAbs are fully human and ready for downstream IND-enabling and/or translational studies.
5
Citation2
0
Save
20

Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2

Zhenhao Fang et al.Feb 15, 2022
+16
L
K
Z
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has high transmissibility and recently swept the globe. Due to the extensive number of mutations, this variant has high level of immune evasion, which drastically reduced the efficacy of existing antibodies and vaccines. Thus, it is important to test an Omicron-specific vaccine, evaluate its immune response against Omicron and other variants, and compare its immunogenicity as boosters with existing vaccine designed against the reference wildtype virus (WT). Here, we generated an Omicron-specific lipid nanoparticle (LNP) mRNA vaccine candidate, and tested its activity in animals, both alone and as a heterologous booster to existing WT mRNA vaccine. Our Omicron-specific LNP-mRNA vaccine elicited strong and specific antibody response in vaccination-naive mice. Mice that received two-dose WT LNP-mRNA, the one mimicking the commonly used Pfizer/Moderna mRNA vaccine, showed a >40-fold reduction in neutralization potency against Omicron variant than that against WT two weeks post second dose, which further reduced to background level >3 months post second dose. As a booster shot for two-dose WT mRNA vaccinated mice, a single dose of either a homologous booster with WT LNP-mRNA or a heterologous booster with Omicron LNP-mRNA restored the waning antibody response against Omicron, with over 40-fold increase at two weeks post injection as compared to right before booster. Interestingly, the heterologous Omicron LNP-mRNA booster elicited neutralizing titers 10-20 fold higher than the homologous WT booster against the Omicron variant, with comparable titers against the Delta variant. All three types of vaccination, including Omicron mRNA alone, WT mRNA homologous booster, and Omicron heterologous booster, elicited broad binding antibody responses against SARS-CoV-2 WA-1, Beta, and Delta variants, as well as other Betacoronavirus species such as SARS-CoV, but not Middle East respiratory syndrome coronavirus (MERS-CoV). These data provided direct proof-of-concept assessments of an Omicron-specific mRNA vaccination in vivo, both alone and as a heterologous booster to the existing widely-used WT mRNA vaccine form.
0

Sensitive detection of synthetic response to cancer immunotherapy driven by gene paralog pairs

Chuanpeng Dong et al.Jul 4, 2024
+6
E
F
C
Emerging immunotherapies such as immune checkpoint blockade (ICB) and chimeric antigen receptor T-cell (CAR-T) therapy have revolutionized cancer treatment and have improved the survival of patients with multiple cancer types. Despite this success many patients are unresponsive to these treatments or relapse following treatment. CRISPR activation and knockout (KO) screens have been used to identify novel single gene targets that can enhance effector T cell function and promote immune cell targeting and eradication of tumors. However, cancer cells often employ multiple genes to promote an immunosuppressive pathway and thus modulating individual genes often has a limited effect. Paralogs are genes that originate from common ancestors and retain similar functions. They often have complex effects on a particular phenotype depending on factors like gene family similarity, each individual gene's expression and the physiological or pathological context. Some paralogs exhibit synthetic lethal interactions in cancer cell survival; however, a thorough investigation of paralog pairs that could enhance the efficacy of cancer immunotherapy is lacking. Here we introduce a sensitive computational approach that uses sgRNA sets enrichment analysis to identify cancer-intrinsic paralog pairs which have the potential to synergistically enhance T cell-mediated tumor destruction. We have further developed an ensemble learning model that uses an XGBoost classifier and incorporates features such as gene characteristics, sequence and structural similarities, protein-protein interaction (PPI) networks, and gene coevolution data to predict paralog pairs that are likely to enhance immunotherapy efficacy. We experimentally validated the functional significance of these predicted paralog pairs using double knockout (DKO) of identified paralog gene pairs as compared to single gene knockouts (SKOs). These data and analyses collectively provide a sensitive approach to identify previously undetected paralog pairs that can enhance cancer immunotherapy even when individual genes within the pair has a limited effect.