AC
Austin Clyde
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
233
h-index:
16
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
7

High Throughput Virtual Screening and Validation of a SARS-CoV-2 Main Protease Non-Covalent Inhibitor

Austin Clyde et al.Mar 27, 2021
Despite the recent availability of vaccines against the acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the search for inhibitory therapeutic agents has assumed importance especially in the context of emerging new viral variants. In this paper, we describe the discovery of a novel non-covalent small-molecule inhibitor, MCULE-5948770040, that binds to and inhibits the SARS-Cov-2 main protease (M pro ) by employing a scalable high throughput virtual screening (HTVS) framework and a targeted compound library of over 6.5 million molecules that could be readily ordered and purchased. Our HTVS framework leverages the U.S. supercomputing infrastructure achieving nearly 91% resource utilization and nearly 126 million docking calculations per hour. Downstream biochemical assays validate this M pro inhibitor with an inhibition constant ( K i ) of 2.9 µ M [95% CI 2.2, 4.0]. Further, using room-temperature X-ray crystallography, we show that MCULE-5948770040 binds to a cleft in the primary binding site of M pro forming stable hydrogen bond and hydrophobic interactions. We then used multiple µ s-timescale molecular dynamics (MD) simulations, and machine learning (ML) techniques to elucidate how the bound ligand alters the conformational states accessed by M pro , involving motions both proximal and distal to the binding site. Together, our results demonstrate how MCULE-5948770040 inhibits M pro and offers a springboard for further therapeutic design. Significance Statement The ongoing novel coronavirus pandemic (COVID-19) has prompted a global race towards finding effective therapeutics that can target the various viral proteins. Despite many virtual screening campaigns in development, the discovery of validated inhibitors for SARS-CoV-2 protein targets has been limited. We discover a novel inhibitor against the SARS-CoV-2 main protease. Our integrated platform applies downstream biochemical assays, X-ray crystallography, and atomistic simulations to obtain a comprehensive characterization of its inhibitory mechanism. Inhibiting M pro can lead to significant biomedical advances in targeting SARS-CoV-2 treatment, as it plays a crucial role in viral replication.
7
Citation24
0
Save
23

Intelligent Resolution: Integrating Cryo-EM with AI-driven Multi-resolution Simulations to Observe the SARS-CoV-2 Replication-Transcription Machinery in Action

Anda Trifan et al.Oct 12, 2021
ABSTRACT The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g., cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.
23
Citation6
0
Save