AA
Anima Anandkumar
Author with expertise in Prediction of Protein Subcellular Localization
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
417
h-index:
47
/
i10-index:
150
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Physics-informed machine learning: case studies for weather and climate modelling

Karthik Kashinath et al.Feb 15, 2021
Machine learning (ML) provides novel and powerful ways of accurately and efficiently recognizing complex patterns, emulating nonlinear dynamics, and predicting the spatio-temporal evolution of weather and climate processes. Off-the-shelf ML models, however, do not necessarily obey the fundamental governing laws of physical systems, nor do they generalize well to scenarios on which they have not been trained. We survey systematic approaches to incorporating physics and domain knowledge into ML models and distill these approaches into broad categories. Through 10 case studies, we show how these approaches have been used successfully for emulating, downscaling, and forecasting weather and climate processes. The accomplishments of these studies include greater physical consistency, reduced training time, improved data efficiency, and better generalization. Finally, we synthesize the lessons learned and identify scientific, diagnostic, computational, and resource challenges for developing truly robust and reliable physics-informed ML models for weather and climate processes. This article is part of the theme issue ‘Machine learning for weather and climate modelling’.
0
Paper
Citation363
0
Save
23

Intelligent Resolution: Integrating Cryo-EM with AI-driven Multi-resolution Simulations to Observe the SARS-CoV-2 Replication-Transcription Machinery in Action

Anda Trifan et al.Oct 12, 2021
ABSTRACT The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g., cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.
23
Citation6
0
Save