IM
Ignas Masilionis
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
16
(81% Open Access)
Cited by:
843
h-index:
13
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Regenerative lineages and immune-mediated pruning in lung cancer metastasis

Ashley Laughney et al.Feb 1, 2020
Developmental processes underlying normal tissue regeneration have been implicated in cancer, but the degree of their enactment during tumor progression and under the selective pressures of immune surveillance, remain unknown. Here we show that human primary lung adenocarcinomas are characterized by the emergence of regenerative cell types, typically seen in response to lung injury, and by striking infidelity among transcription factors specifying most alveolar and bronchial epithelial lineages. In contrast, metastases are enriched for key endoderm and lung-specifying transcription factors, SOX2 and SOX9, and recapitulate more primitive transcriptional programs spanning stem-like to regenerative pulmonary epithelial progenitor states. This developmental continuum mirrors the progressive stages of spontaneous outbreak from metastatic dormancy in a mouse model and exhibits SOX9-dependent resistance to natural killer cells. Loss of developmental stage-specific constraint in macrometastases triggered by natural killer cell depletion suggests a dynamic interplay between developmental plasticity and immune-mediated pruning during metastasis. Single-cell analysis of lung cancer progression uncovers developmental and regenerative programs co-opted by cancer cells and immune-mediated pruning during metastatic outbreak
0
Citation329
0
Save
65

Single cell profiling reveals novel tumor and myeloid subpopulations in small cell lung cancer

Joseph Chan et al.Dec 1, 2020
ABSTRACT Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential expression of ASCL1 , NEUROD1 , and POU2F3 (SCLC-A, -N, and -P, respectively), which are associated with distinct therapeutic vulnerabilities. To define the heterogeneity of tumors and their associated microenvironments across subtypes, we sequenced 54,523 cellular transcriptomes from 21 human biospecimens. Our single-cell SCLC atlas reveals tumor diversity exceeding lung adenocarcinoma, driven by canonical, intermediate, and admixed subtypes. We discovered a PLCG2 -high tumor cell population with stem-like, pro-metastatic features that recurs across subtypes and predicts worse overall survival, and manipulation of PLCG2 expression in cells confirms correlation with key metastatic markers. Treatment and subtype are associated with substantial phenotypic changes in the SCLC immune microenvironment, with greater T-cell dysfunction in SCLC-N than SCLC-A. Moreover, the recurrent, PLCG2- high subclone is associated with exhausted CD8+ T-cells and a pro-fibrotic, immunosuppressive monocyte/macrophage population, suggesting possible tumor-immune coordination to promote metastasis.
65
Citation8
0
Save
1

Multilineage plasticity in prostate cancer through expansion of stem–like luminal epithelial cells with elevated inflammatory signaling

Samir Zaidi et al.Nov 3, 2021
Abstract Lineage plasticity is a well–established mechanism of resistance to targeted therapies in lung and prostate cancer, where tumors transition from adenocarcinoma to small–cell or neuroendocrine carcinoma. Through single–cell analysis of a cohort of heavily–treated castration–resistant human prostate cancers (CRPC), we report a greater degree of plasticity than previously appreciated, with multiple distinct neuroendocrine (NEPC), mesenchymal (EMT–like), and other subpopulations detected within single biopsies. To explore the steps leading to this plasticity, we turned to two genetically engineered mouse models of prostate cancer that recapitulate progression from adenocarcinoma to neuroendocrine disease. Time course studies reveal expansion of stem–like luminal epithelial cells ( Sca1 +, Psca +, called L2) that, based on trajectories, gave rise to at least 4 distinct subpopulations, NEPC ( Ascl1 +), POU2F3 ( Pou2f3 +), TFF3 ( Tff3 +) and EMT–like ( Vim +, Ncam1 +)––these populations are also seen in human prostate and small cell lung cancers. Transformed L2–like cells express stem–like and gastrointestinal endoderm–like transcriptional programs, indicative of reemerging developmental plasticity programs, as well as elevated Jak/Stat and interferon pathway signaling. In sum, while the magnitude of multilineage heterogeneity, both within and across patients, raises considerable treatment challenges, the identification of highly plastic luminal cells as the likely source of this heterogeneity provides a target for more focused therapeutic intervention. One Sentence Summary Multilineage plasticity results from expansion of stem–like luminal cells with JAK/STAT activation, serving as a therapeutic target.
1
Citation5
0
Save
73

Reversal of lineage plasticity in RB1/TP53-deleted prostate cancer through FGFR and Janus kinase inhibition

Wouter Karthaus et al.Nov 1, 2021
Abstract The inherent plasticity of tumor cells provides a mechanism of resistance to many molecularly targeted therapies, exemplified by adeno-to-neuroendocrine lineage transitions seen in prostate and lung cancer. Here we investigate the root cause of this lineage plasticity in a primary murine prostate organoid model that mirrors the lineage transition seen in patients. These cells lose luminal identity within weeks following deletion of Trp53 and Rb1 , ultimately acquiring an Ar-negative, Syp+ phenotype after orthotopic in vivo transplantation. Single-cell transcriptomic analysis revealed progressive mixing of luminal-basal lineage features after tumor suppressor gene deletion, accompanied by activation of Jak/Stat and Fgfr pathway signaling and interferon-a and -g gene expression programs prior to any morphologic changes. Genetic or pharmacologic inhibition of Jak1/2 in combination with FGFR blockade restored luminal differentiation and sensitivity to antiandrogen therapy in models with residual AR expression. Collectively, we show lineage plasticity initiates quickly as a largely cell-autonomous process and, through newly developed computational approaches, identify a pharmacological strategy that restores lineage identity using clinical grade inhibitors.
73
Citation3
0
Save
0

Single-cell analysis of treatment-resistant prostate cancer: Implications of cell state changes for cell surface antigen–targeted therapies

Samir Zaidi et al.Jul 5, 2024
Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)—a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA , STEAP1 , STEAP2 , TROP2, CEACAM5 , and DLL3 , varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.
0
Citation2
0
Save
0

Single Cell Analysis of Treatment–Resistant Prostate Cancer: Implications of Cell State Changes for Cell Surface Antigen Targeted Therapies

Samir Zaidi et al.Apr 12, 2024
Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis (TMA) on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated, but also found that the expression of molecules targeted therapeutically, namely
0
Citation1
0
Save
Load More