VG
Viviana Gradinaru
Author with expertise in Optogenetics in Neuroscience and Biophysics Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
50
(88% Open Access)
Cited by:
19,580
h-index:
57
/
i10-index:
99
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease

Timothy Sampson et al.Dec 1, 2016
The intestinal microbiota influence neurodevelopment, modulate behavior, and contribute to neurological disorders. However, a functional link between gut bacteria and neurodegenerative diseases remains unexplored. Synucleinopathies are characterized by aggregation of the protein α-synuclein (αSyn), often resulting in motor dysfunction as exemplified by Parkinson's disease (PD). Using mice that overexpress αSyn, we report herein that gut microbiota are required for motor deficits, microglia activation, and αSyn pathology. Antibiotic treatment ameliorates, while microbial re-colonization promotes, pathophysiology in adult animals, suggesting that postnatal signaling between the gut and the brain modulates disease. Indeed, oral administration of specific microbial metabolites to germ-free mice promotes neuroinflammation and motor symptoms. Remarkably, colonization of αSyn-overexpressing mice with microbiota from PD-affected patients enhances physical impairments compared to microbiota transplants from healthy human donors. These findings reveal that gut bacteria regulate movement disorders in mice and suggest that alterations in the human microbiome represent a risk factor for PD.
0

Structural and molecular interrogation of intact biological systems

Kwanghun Chung et al.Apr 9, 2013
Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using mouse brains, we show intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters. CLARITY also enables intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in non-sectioned tissue, and antibody labelling throughout the intact adult mouse brain. Finally, we show that CLARITY enables fine structural analysis of clinical samples, including non-sectioned human tissue from a neuropsychiatric-disease setting, establishing a path for the transmutation of human tissue into a stable, intact and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease. High-resolution imaging has traditionally required thin sectioning, a process that disrupts long-range connectivity in the case of brains: here, intact mouse brains and human brain samples have been made fully transparent and macromolecule permeable using a new method termed CLARITY, which allows for intact-tissue imaging as well as repeated antibody labelling and in situ hybridization of non-sectioned tissue. High-resolution imaging of biological tissue has traditionally required sectioning, which for tissues like the brain means the loss of long-range connectivity. Now Karl Deisseroth and colleagues have developed a way of making full, intact organs optically transparent and macromolecule-permeable by building a hydrogel-based infrastructure from within the tissue that allows subsequent removal of light-scattering lipids, resulting in a transparent brain. The method, termed CLARITY, also allows repeated antibody labelling of proteins, and in situ hybridization of nucleic acids in non-sectioned tissue, such as full mouse brains or human clinical samples stored in formalin for many years.
0

Amygdala circuitry mediating reversible and bidirectional control of anxiety

Kay Tye et al.Mar 1, 2011
The amygdala, a brain region important for learning fearful memories, is thought to have a role in generalized anxiety, but the subregions and connections involved in this response are unknown. Now, using optogenetic stimulation of basolateral amygdala terminals in the central nucleus of the amygdala of rats, a specific circuit for natural bidirectional anxiety control has been identified. Stimulating these neurons has a calming effect, whereas blocking the same projection increases anxiety-related behaviours. These findings are consistent with a role for the central nucleus of the amygdala in anxiety, although there may be other circuits working in parallel or downstream of the amygdala. The amygdala, a brain region important for learning fearful memories, is thought to have a role in generalized anxiety, but the critical subregions and connections are unknown. This paper shows that optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala of rats with channelrhodopsin has an anxiolytic effect, whereas inhibition of the same projection with eNpHR3.0 increases anxiety related behaviours. These effects were not observed with direct optogenetic control of BLA somata themselves, indicating that selective activation of certain connections can have different effects. Anxiety—a sustained state of heightened apprehension in the absence of immediate threat—becomes severely debilitating in disease states1. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence)2 and contribute to the aetiology of major depression and substance abuse3,4. Although it has been proposed that the amygdala, a brain region important for emotional processing5,6,7,8, has a role in anxiety9,10,11,12,13, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics14,15,16 to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)—achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA—exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin15 (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA–CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease.
0
Citation1,163
0
Save
0

Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems

Ken Chan et al.Jun 26, 2017
The authors report two new engineered AAV capsids that efficiently deliver genes throughout the adult central and peripheral nervous systems after intravenous administration. Complementing these capsids is an AAV toolbox that enables cell morphology and genetic manipulation studies of defined neural cell types in transgenic or wild-type animals. Adeno-associated viruses (AAVs) are commonly used for in vivo gene transfer. Nevertheless, AAVs that provide efficient transduction across specific organs or cell populations are needed. Here, we describe AAV-PHP.eB and AAV-PHP.S, capsids that efficiently transduce the central and peripheral nervous systems, respectively. In the adult mouse, intravenous administration of 1 × 1011 vector genomes (vg) of AAV-PHP.eB transduced 69% of cortical and 55% of striatal neurons, while 1 × 1012 vg of AAV-PHP.S transduced 82% of dorsal root ganglion neurons, as well as cardiac and enteric neurons. The efficiency of these vectors facilitates robust cotransduction and stochastic, multicolor labeling for individual cell morphology studies. To support such efforts, we provide methods for labeling a tunable fraction of cells without compromising color diversity. Furthermore, when used with cell-type-specific promoters and enhancers, these AAVs enable efficient and targetable genetic modification of cells throughout the nervous system of transgenic and non-transgenic animals.
0
Citation1,121
0
Save
0

Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing

Baohua Yang et al.Jul 31, 2014
Understanding the structure-function relationships at cellular, circuit, and organ-wide scale requires 3D anatomical and phenotypical maps, currently unavailable for many organs across species. At the root of this knowledge gap is the absence of a method that enables whole-organ imaging. Herein, we present techniques for tissue clearing in which whole organs and bodies are rendered macromolecule-permeable and optically transparent, thereby exposing their cellular structure with intact connectivity. We describe PACT (passive clarity technique), a protocol for passive tissue clearing and immunostaining of intact organs; RIMS (refractive index matching solution), a mounting media for imaging thick tissue; and PARS (perfusion-assisted agent release in situ), a method for whole-body clearing and immunolabeling. We show that in rodents PACT, RIMS, and PARS are compatible with endogenous-fluorescence, immunohistochemistry, RNA single-molecule FISH, long-term storage, and microscopy with cellular and subcellular resolution. These methods are applicable for high-resolution, high-content mapping and phenotyping of normal and pathological elements within intact organs and bodies.
0
Citation862
0
Save
0

Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain

Benjamin Deverman et al.Feb 1, 2016
AAV vectors that efficiently transduce the mouse brain after intravenous injection are generated with a CRE-dependent selection system. Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer1,2,3,4,5,6. However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics7,8,9,10,11,12,13. Here we describe a capsid selection method, called Cre recombination–based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREATE to generate AAV variants that efficiently and widely transduce the adult mouse central nervous system (CNS) after intravenous injection. One variant, AAV-PHP.B, transfers genes throughout the CNS with an efficiency that is at least 40-fold greater than that of the current standard, AAV9 (refs. 14,15,16,17), and transduces the majority of astrocytes and neurons across multiple CNS regions. In vitro, it transduces human neurons and astrocytes more efficiently than does AAV9, demonstrating the potential of CREATE to produce customized AAV vectors for biomedical applications.
0
Citation831
0
Save
0

Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins

Joanna Mattis et al.Dec 18, 2011
In this Analysis, the authors directly experimentally compare microbial opsins used for the control of neural activity. They extract essential principles and key parameters that can help end users with the design and interpretation of optogenetic experiments and guide tool developers in the characterization of future tools. Diverse optogenetic tools have allowed versatile control over neural activity. Many depolarizing and hyperpolarizing tools have now been developed in multiple laboratories and tested across different preparations, presenting opportunities but also making it difficult to draw direct comparisons. This challenge has been compounded by the dependence of performance on parameters such as vector, promoter, expression time, illumination, cell type and many other variables. As a result, it has become increasingly complicated for end users to select the optimal reagents for their experimental needs. For a rapidly growing field, critical figures of merit should be formalized both to establish a framework for further development and so that end users can readily understand how these standardized parameters translate into performance. Here we systematically compared microbial opsins under matched experimental conditions to extract essential principles and identify key parameters for the conduct, design and interpretation of experiments involving optogenetic techniques.
Load More