AO
A. Oudelaar
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(61% Open Access)
Cited by:
389
h-index:
22
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic dissection of the α-globin super-enhancer in vivo

Deborah Hay et al.Jul 4, 2016
Douglas Higgs and colleagues functionally test the α-globin super-enhancer in mice by genetically deleting its constituent enhancers. They find that the individual regulatory elements seem to act independently and in an additive way with respect to hematological phenotype, gene expression, and chromatin structure and conformation. Many genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. These super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation, without clear evidence of synergistic or higher-order effects. Our study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation.
0
Citation341
0
Save
16

Multipartite super-enhancers function in an orientation-dependent manner

Mira Kassouf et al.Jul 14, 2022
Abstract Transcriptional enhancers regulate gene expression in a developmental-stage and cell-specific manner. They were originally defined as individual regulatory elements that activate expression regardless of distance and orientation to their cognate genes. Genome-wide studies have shown that the mammalian enhancer landscape is much more complex, with different classes of individual enhancers and clusters of enhancer-like elements combining in additive, synergistic and redundant manners, possibly acting as single, integrated regulatory elements. These so-called super-enhancers are largely defined as clusters of enhancer-like elements which recruit particularly high levels of Mediator and often drive high levels of expression of key lineage-specific genes. Here, we analysed 78 erythroid-specific super-enhancers and showed that, as units, they preferentially interact in a directional manner, to drive expression of their cognate genes. Using the well characterised α-globin super-enhancer, we show that inverting this entire structure severely downregulates α-globin expression and activates flanking genes 5’ of the super-enhancer. Our detailed genetic dissection of the α-globin locus clearly attributes the cluster’s functional directionality to its sequence orientation, demonstrating that, unlike regular enhancers, super-enhancers act in an orientation-dependent manner. Together, these findings identify a novel emergent property of super-enhancers and revise current models by which enhancers are thought to contact and activate their cognate genes.
16
Citation4
0
Save
0

Dynamics of the 4D genome during lineage specification, differentiation and maturation in vivo

A. Oudelaar et al.Sep 10, 2019
Abstract Mammalian gene expression patterns are controlled by regulatory elements, which interact within Topologically Associating Domains (TADs). The relationship between activation of regulatory elements, formation of structural chromatin interactions and gene expression during development is unclear. We developed Tiled-C, a low-input Chromosome Conformation Capture (3C) approach, to study chromatin architecture at high spatial and temporal resolution through in vivo mouse erythroid differentiation. Integrated analysis of matched chromatin accessibility and single-cell expression data shows that regulatory elements gradually become accessible within pre-existing TADs during early differentiation. This is followed by structural re-organization within the TAD and formation of specific contacts between enhancers and promoters. In contrast to previous reports, our high-resolution data show that these enhancer-promoter interactions are not established prior to gene expression, but formed gradually during differentiation, concomitant with progressive upregulation of gene activity. Together, these results provide new insight into the close, interdependent relationship between chromatin architecture and gene regulation during development.
0
Citation4
0
Save
49

Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF

Abrar Aljahani et al.Aug 10, 2021
ABSTRACT Enhancers and promoters predominantly interact within large-scale topologically associating domains (TADs), which are formed by loop extrusion mediated by cohesin and CTCF. However, it is unclear whether complex chromatin structures exist at sub-kilobase-scale and to what extent fine-scale regulatory interactions depend on loop extrusion. To address these questions, we present an MNase-based chromosome conformation capture (3C) approach, which has enabled us to generate the most detailed local interaction data to date and precisely investigate the effects of cohesin and CTCF depletion on chromatin architecture. Our data reveal that cis -regulatory elements have distinct internal nano-scale structures, within which local insulation is dependent on CTCF, but which are independent of cohesin. In contrast, we find that depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Together, our data show that loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression.
49
Citation2
0
Save
14

DynamicRunx1chromatin boundaries affect gene expression in hematopoietic development

Dominic Owens et al.May 15, 2021
Abstract The transcription factor RUNX1 is a critical regulator of developmental hematopoiesis and is frequently disrupted in leukemia. Runx1 is a large, complex gene that is expressed from two alternative promoters under the spatiotemporal control of multiple hematopoietic enhancers. To dissect the dynamic regulation of Runx1 in hematopoietic development, we analyzed its three-dimensional chromatin conformation in mouse embryonic stem cell (ESC) differentiation cultures. Runx1 resides in a 1.1 Mb topologically associating domain (TAD) demarcated by convergent CTCF motifs. As ESCs differentiate to mesoderm, chromatin accessibility, Runx1 enhancer-promoter (E-P) interactions, and CTCF-CTCF interactions increased in the TAD, along with initiation of Runx1 expression from the P2 promoter. Differentiation to hematopoietic progenitor cells was associated with the formation of tissue-specific sub-TADs over Runx1 , a shift in E-P interactions, P1 promoter demethylation, and robust expression from both Runx1 promoters. Deletions of promoter-proximal CTCF sites at the sub-TAD boundaries had no obvious effects on E-P interactions but led to partial loss of domain structure, mildly affected gene expression, and delayed hematopoietic development. Together, our analyses of gene regulation at a large multi-promoter developmental gene revealed that dynamic sub-TAD chromatin boundaries play a role in establishing TAD structure and coordinated gene expression.
14
Citation1
0
Save
0

Senescent cells cluster CTCF on nuclear speckles to sustain their splicing program

Spyridon Palikyras et al.Jul 16, 2024
ABSTRACT Senescence —the endpoint of replicative lifespan for normal cells— is established via a complex sequence of molecular events. One such event is the dramatic reorganization of CTCF into senescence-induced clusters (SICCs). However, the molecular determinants, genomic consequences, and functional purpose of SICCs remained unknown. Here, we combine functional assays, super-resolution imaging, and 3D genomics with computational modelling to dissect SICC emergence. We establish that the competition between CTCF-bound and non-bound loci dictates clustering propensity. Upon senescence entry, cells repurpose SRRM2 —a key component of nuclear speckles— and BANF1 —a ‘molecular glue’ for chromosomes— to cluster CTCF and rewire genome architecture. This CTCF-centric reorganization in reference to nuclear speckles functionally sustains the senescence splicing program, as SICC disruption fully reverts alternative splicing patterns. We therefore uncover a new paradigm, whereby cells translate changes in nuclear biochemistry into architectural changes directing splicing choices so as to commit to the fate of senescence. GRAPHICAL ABSTRACT HIGHLIGHTS HMGB2-bound loci compete with CTCF-bound ones for nuclear speckle association Senescent cells repurpose SRRM2 and BANF1 to cluster CTCF on speckles BANF1 is essential, but not sufficient for CTCF clustering The SRRM2 RNA-binding domain directs CTCF clustering SICCs rewire chromatin positioning to sustain the senescence splicing program
0

A tissue-specific self-interacting chromatin domain forms independently of enhancer-promoter interactions

Jill Brown et al.Dec 15, 2017
A variety of self-interacting domains, defined at different levels of resolution, have been described in mammalian genomes. These include Chromatin Compartments (A and B), Topologically Associated Domains (TADs), contact domains, sub-TADs, insulated neighbourhoods and frequently interacting regions (FIREs). Whereas many studies have found the organisation of self-interacting domains to be conserved across cell types, some do form in a lineage-specific manner. However, it is not clear to what degree such tissue-specific structures result from processes related to gene activity such as enhancer-promoter interactions or whether they form earlier during lineage commitment and are therefore likely to be prerequisite for promoting gene expression. To examine these models of genome organisation in detail, we used a combination of high-resolution chromosome conformation capture, a newly-developed form of quantitative fluorescence in-situ hybridisation and super-resolution imaging to study a 70 kb self-interacting domain containing the mouse α-globin locus. To understand how this self-interacting domain is established, we studied the region when the genes are inactive and during erythroid differentiation when the genes are progressively switched on. In contrast to many current models of long-range gene regulation, we show that an erythroid-specific, decompacted self-interacting domain, delimited by convergent CTCF/cohesin binding sites, forms prior to the onset of robust gene expression. Using previously established mouse models we show that formation of the self-interacting domain does not rely on interactions between the α-globin genes and their enhancers. As there are also no tissue-specific changes in CTCF binding, then formation of the domain may simply depend on the presence of activated lineage-specific cis-elements driving a transcription-independent mechanism for opening chromatin throughout the 70 kb region to create a permissive environment for gene expression. These findings are consistent with a model of loop-extrusion in which all segments of chromatin, within a region delimited by CTCF boundary elements, can contact each other. Our findings suggest that activation of tissue-specific element(s) within such a self-interacting region is sufficient to influence all chromatin within the domain.
Load More