CS
Cassandra Spracklen
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
857
h-index:
27
/
i10-index:
50
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The trans-ancestral genomic architecture of glycemic traits

Jihua Chen et al.May 31, 2021
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.
1
Citation460
0
Save
0

A saturated map of common genetic variants associated with human height

Loïc Yengo et al.Oct 12, 2022
Abstract Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes 1 . Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel 2 ) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.
0
Citation370
0
Save
3

A Saturated Map of Common Genetic Variants Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries

Loïc Yengo et al.Jan 10, 2022
ABSTRACT Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse ancestries, that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a median size of ~90 kb, covering ~21% of the genome. The density of independent associations varies across the genome and the regions of elevated density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes, associated regions, and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely explained by linkage disequilibrium and allele frequency differences within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than needed to implicate causal genes and variants. Overall, this study, the largest GWAS to date, provides an unprecedented saturated map of specific genomic regions containing the vast majority of common height-associated variants.
3
Citation16
0
Save
57

A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids

Shweta Ramdas et al.Dec 8, 2021
Abstract A major challenge of genome-wide association studies (GWAS) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations, and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels, and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. Two prioritized genes, CREBRF and RRBP1 , show convergent evidence across functional datasets supporting their roles in lipid biology.
57
Citation1
0
Save
0

SMIM1 absence is associated with reduced energy expenditure and excess weight

Luca Stefanucci et al.Jun 1, 2024
BackgroundObesity rates have nearly tripled in the past 50 years, and by 2030 more than 1 billion individuals worldwide are projected to be obese. This creates a significant economic strain due to the associated non-communicable diseases. The root cause is an energy expenditure imbalance, owing to an interplay of lifestyle, environmental, and genetic factors. Obesity has a polygenic genetic architecture; however, single genetic variants with large effect size are etiological in a minority of cases. These variants allowed the discovery of novel genes and biology relevant to weight regulation and ultimately led to the development of novel specific treatments.MethodsWe used a case-control approach to determine metabolic differences between individuals homozygous for a loss-of-function genetic variant in the small integral membrane protein 1 (SMIM1) and the general population, leveraging data from five cohorts. Metabolic characterization of SMIM1−/− individuals was performed using plasma biochemistry, calorimetric chamber, and DXA scan.FindingsWe found that individuals homozygous for a loss-of-function genetic variant in SMIM1 gene, underlying the blood group Vel, display excess body weight, dyslipidemia, altered leptin to adiponectin ratio, increased liver enzymes, and lower thyroid hormone levels. This was accompanied by a reduction in resting energy expenditure.ConclusionThis research identified a novel genetic predisposition to being overweight or obese. It highlights the need to investigate the genetic causes of obesity to select the most appropriate treatment given the large cost disparity between them.FundingThis work was funded by the National Institute of Health Research, British Heart Foundation, and NHS Blood and Transplant.
0

Identification of type 2 diabetes loci in 433,540 East Asian individuals

Cassandra Spracklen et al.Jun 28, 2019
Meta-analyses of genome-wide association studies (GWAS) have identified >240 loci associated with type 2 diabetes (T2D), however most loci have been identified in analyses of European-ancestry individuals. To examine T2D risk in East Asian individuals, we meta-analyzed GWAS data in 77,418 cases and 356,122 controls. In the main analysis, we identified 298 distinct association signals at 178 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 56 loci newly implicated in T2D predisposition. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. New associations include signals in/near GDAP1 , PTF1A , SIX3, ALDH2, a microRNA cluster, and genes that affect muscle and adipose differentiation. At another locus, eQTLs at two overlapping T2D signals act through two genes, NKX6-3 and ANK1 , in different tissues. Association studies in diverse populations identify additional loci and elucidate disease genes, biology, and pathways.Type 2 diabetes (T2D) is a common metabolic disease primarily caused by insufficient insulin production and/or secretion by the pancreatic β cells and insulin resistance in peripheral tissues[1][1]. Most genetic loci associated with T2D have been identified in populations of European (EUR) ancestry, including a recent meta-analysis of genome-wide association studies (GWAS) of nearly 900,000 individuals of European ancestry that identified >240 loci influencing the risk of T2D[2][2]. Differences in allele frequency between ancestries affect the power to detect associations within a population, particularly among variants rare or monomorphic in one population but more frequent in another[3][3],[4][4]. Although smaller than studies in European populations, a recent T2D meta-analysis in almost 200,000 Japanese individuals identified 28 additional loci[4][4]. The relative contributions of different pathways to the pathophysiology of T2D may also differ between ancestry groups. For example, in East Asian (EAS) populations, T2D prevalence is greater than in European populations among people of similar body mass index (BMI) or waist circumference[5][5]. We performed the largest meta-analysis of East Asian individuals to identify new genetic associations and provide insight into T2D pathogenesis. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5
0

Comparative Multi-omic Mapping of Human Pancreatic Islet Endoplasmic Reticulum and Cytokine Stress Responses Provides Insights into Type 2 Diabetes Genetics

Eishani Sokolowski et al.Feb 21, 2024
ABSTRACT Endoplasmic reticulum (ER) and inflammatory stress responses are two pathophysiologic factors contributing to islet dysfunction and failure in Type 2 Diabetes (T2D). However, how human islet cells respond to these stressors and whether T2D-associated genetic variants modulate these responses is unknown. To fill this knowledge gap, we profiled transcriptional (RNA-seq) and epigenetic (ATAC-seq) remodeling in human islets exposed to ex vivo ER (thapsigargin) or inflammatory (IL-1β+IFN-γ) stress. 5,427 genes (∼32%) were associated with stress responses; most were stressor-specific, including upregulation of genes mediating unfolded protein response (e.g. DDIT3, ATF4 ) and NFKB signaling (e.g. NFKB1, NFKBIA ) in ER stress and cytokine-induced inflammation respectively. Islet single-cell RNA-seq profiling revealed strong but heterogeneous beta cell ER stress responses, including a distinct beta cell subset that highly expressed apoptotic genes. Epigenetic profiling uncovered 14,968 stress-responsive cis- regulatory elements (CREs; ∼14%), the majority of which were stressor-specific, and revealed increased accessibility at binding sites of transcription factors that were induced upon stress (e.g. ATF4 for ER stress, IRF8 for cytokine-induced inflammation). Eighty-six stress-responsive CREs overlapped known T2D-associated variants, including 20 residing within CREs that were more accessible upon ER stress. Among these, we linked the rs6917676 T2D risk allele (T) to increased in vivo accessibility of an islet ER stress-responsive CRE and allele-specific beta cell nuclear factor binding in vitro . We showed that MAP3K5, the only ER stress-responsive gene in this locus, promotes beta cell apoptosis. Consistent with its pro-apoptotic and putative diabetogenic roles, MAP3K5 expression inversely correlated with beta cell abundance in human islets and was induced in beta cells from T2D donors. Together, this study provides new genome-wide insights into human islet stress responses and putative mechanisms of T2D genetic variants.