WZ
Wei Zhou
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
32
(47% Open Access)
Cited by:
140
h-index:
72
/
i10-index:
179
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Nuclear genetic control of mtDNA copy number and heteroplasmy in humans

Rahul Gupta et al.Aug 16, 2023
Abstract Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome required for oxidative phosphorylation 1 . Heteroplasmy refers to the presence of a mixture of mtDNA alleles in an individual and has been associated with disease and ageing. Mechanisms underlying common variation in human heteroplasmy, and the influence of the nuclear genome on this variation, remain insufficiently explored. Here we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived whole-genome sequences from 274,832 individuals and perform genome-wide association studies to identify associated nuclear loci. Following blood cell composition correction, we find that mtCN declines linearly with age and is associated with variants at 92 nuclear loci. We observe that nearly everyone harbours heteroplasmic mtDNA variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to arise somatically and accumulate sharply after the age of 70 years, whereas (2) heteroplasmic indels are maternally inherited as mixtures with relative levels associated with 42 nuclear loci involved in mtDNA replication, maintenance and novel pathways. These loci may act by conferring a replicative advantage to certain mtDNA alleles. As an illustrative example, we identify a length variant carried by more than 50% of humans at position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA transcription/replication switching 2,3 . We find that this variant exerts cis -acting genetic control over mtDNA abundance and is itself associated in- trans with nuclear loci encoding machinery for this regulatory switch. Our study suggests that common variation in the nuclear genome can shape variation in mtCN and heteroplasmy dynamics across the human population.
0
Citation28
0
Save
58

Cross-platform proteomics to advance genetic prioritisation strategies

Maik Pietzner et al.Mar 19, 2021
ABSTRACT Discovery of protein quantitative trait loci (pQTLs) has been enabled by affinity-based proteomic techniques and is increasingly used to guide genetically informed drug target evaluation. Large-scale proteomic data are now being created, but systematic, bidirectional assessment of platform differences is lacking, restricting clinical translation. We compared genetic, technical, and phenotypic determinants of 871 protein targets measured using both aptamer-(SomaScan® Platform v4) and antibody-based (Olink) assays in up to 10,708 individuals. Correlations coefficients for overlapping protein targets varied widely (median 0.38, IQR: 0.08-0.64). We found that 64% of pQTLs were shared across both platforms among all identified 608 cis - and 1,315 trans -pQTLs with sufficient power for replication, but with correlations of effect estimates being lower than previously reported ( cis : 0.41, trans : 0.34). We identified technical, protein, and variant characteristics that contributed significantly to platform differences and found contradicting phenotypic associations attributable to those. We demonstrate how integrating phenomic and gene expression data improves genetic prioritisation strategies, including platform-specific pQTLs.
58
Citation18
0
Save
3

A Saturated Map of Common Genetic Variants Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries

Loïc Yengo et al.Jan 10, 2022
ABSTRACT Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse ancestries, that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a median size of ~90 kb, covering ~21% of the genome. The density of independent associations varies across the genome and the regions of elevated density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes, associated regions, and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely explained by linkage disequilibrium and allele frequency differences within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than needed to implicate causal genes and variants. Overall, this study, the largest GWAS to date, provides an unprecedented saturated map of specific genomic regions containing the vast majority of common height-associated variants.
3
Citation16
0
Save
3

Different responses to risperidone treatment in Schizophrenia: a multicenter genome-wide association and whole exome sequencing joint study

Mingzhe Zhao et al.Apr 28, 2022
Risperidone is routinely used in the clinical management of schizophrenia, but the treatment response is highly variable among different patients. The genetic underpinnings of the treatment response are not well understood. We performed a pharmacogenomic study of the treatment response to risperidone in patients with schizophrenia by using a SNP microarray -based genome-wide association study (GWAS) and whole exome sequencing (WES)-based GWAS. DNA samples were collected from 189 patients for the GWAS and from 222 patients for the WES after quality control in multiple centers of China. Antipsychotic response phenotypes of patients who received eight weeks of risperidone treatment were quantified with percentage change on the Positive and Negative Syndrome Scale (PANSS). The GWAS revealed a significant association between several SNPs and treatment response, such as three GRM7 SNPs (rs141134664, rs57521140, and rs73809055). Gene-based analysis in WES revealed 13 genes that were associated with antipsychotic response, such as GPR12 and MAP2K3. We did not identify shared loci or genes between GWAS and WES, but association signals tended to cluster into the GPCR gene family and GPCR signaling pathway, which may play an important role in the treatment response etiology. This study may provide a research paradigm for pharmacogenomic research, and these data provide a promising illustration of our potential to identify genetic variants underlying antipsychotic responses and may ultimately facilitate precision medicine in schizophrenia.
3
Citation13
1
Save
0

Comparative genetic architectures of schizophrenia in East Asian and European populations

Max Lam et al.Oct 17, 2018
Author summary Schizophrenia is a severe psychiatric disorder with a lifetime risk of about 1% world-wide. Most large schizophrenia genetic studies have studied people of primarily European ancestry, potentially missing important biological insights. Here we present a study of East Asian participants (22,778 schizophrenia cases and 35,362 controls), identifying 21 genome-wide significant schizophrenia associations in 19 genetic loci. Over the genome, the common genetic variants that confer risk for schizophrenia have highly similar effects in those of East Asian and European ancestry (r g =0.98), indicating for the first time that the genetic basis of schizophrenia and its biology are broadly shared across these world populations. A fixed-effect meta-analysis including individuals from East Asian and European ancestries revealed 208 genome-wide significant schizophrenia associations in 176 genetic loci (53 novel). Trans-ancestry fine-mapping more precisely isolated schizophrenia causal alleles in 70% of these loci. Despite consistent genetic effects across populations, polygenic risk models trained in one population have reduced performance in the other, highlighting the importance of including all major ancestral groups with sufficient sample size to ensure the findings have maximum relevance for all populations.
0
Citation12
0
Save
12

An efficient and accurate frailty model approach for genome-wide survival association analysis controlling for population structure and relatedness in large-scale biobanks

Rounak Dey et al.Nov 1, 2020
Abstract With decades of electronic health records linked to genetic data, large biobanks provide unprecedented opportunities for systematically understanding the genetics of the natural history of complex diseases. Genome-wide survival association analysis can identify genetic variants associated with ages of onset, disease progression and lifespan. We developed an efficient and accurate frailty (random effects) model approach for genome-wide survival association analysis of censored time-to-event (TTE) phenotypes in large biobanks by accounting for both population structure and relatedness. Our method utilizes state-of-the-art optimization strategies to reduce the computational cost. The saddlepoint approximation is used to allow for analysis of heavily censored phenotypes (>90%) and low frequency variants (down to minor allele count 20). We demonstrated the performance of our method through extensive simulation studies and analysis of five TTE phenotypes, including lifespan, with heavy censoring rates (90.9% to 99.8%) on ~400,000 UK Biobank participants with white British ancestry and ~180,000 samples in FinnGen, respectively. We further performed genome-wide association analysis for 871 TTE phenotypes in UK Biobank and presented the genome-wide scale phenome-wide association (PheWAS) results with the PheWeb browser.
12
Citation12
0
Save
1

Genome-wide association study of cardiac troponin I in the general population

Marta Moksnes et al.May 7, 2021
Circulating cardiac troponin proteins are associated with structural heart disease and predict incident cardiovascular disease in the general population. However, the genetic contribution to cardiac troponin I (cTnI) concentrations and its causal effect on cardiovascular phenotypes are unclear. We combine data from two large population-based studies, the Trøndelag Health Study and the Generation Scotland Scottish Family Health Study, and perform a genome-wide association study of high-sensitivity cTnI concentrations with 48 115 individuals. We further use two-sample Mendelian randomization to investigate the causal effects of circulating cTnI on acute myocardial infarction (AMI) and heart failure (HF). We identified 12 genetic loci (8 novel) associated with cTnI concentrations. Associated protein-altering variants highlighted putative functional genes: CAND2, HABP2, ANO5, APOH, FHOD3, TNFAIP2, KLKB1 and LMAN1. Phenome-wide association tests in 1688 phecodes and 83 continuous traits in UK Biobank showed associations between a genetic risk score for cTnI and cardiac arrhythmias, metabolic and anthropometric measures. Using two-sample Mendelian randomization, we confirmed the non-causal role of cTnI in AMI (5948 cases, 355 246 controls). We found indications for a causal role of cTnI in HF (47 309 cases and 930 014 controls), but this was not supported by secondary analyses using left ventricular mass as outcome (18 257 individuals). Our findings clarify the biology underlying the heritable contribution to circulating cTnI and support cTnI as a non-causal biomarker for AMI in the general population. Using genetically informed methods for causal inference helps inform the role and value of measuring cTnI in the general population.
1
Citation12
0
Save
0

Tissue-Specific Alteration of Metabolic Pathways Influences Glycemic Regulation

Natasha Ng et al.Oct 3, 2019
Summary Metabolic dysregulation in multiple tissues alters glucose homeostasis and influences risk for type 2 diabetes (T2D). To identify pathways and tissues influencing T2D-relevant glycemic traits (fasting glucose [FG], fasting insulin [FI], two-hour glucose [2hGlu] and glycated hemoglobin [HbA1c]), we investigated associations of exome-array variants in up to 144,060 individuals without diabetes of multiple ancestries. Single-variant analyses identified novel associations at 21 coding variants in 18 novel loci, whilst gene-based tests revealed signals at two genes, TF (HbA1c) and G6PC (FG, FI). Pathway and tissue enrichment analyses of trait-associated transcripts confirmed the importance of liver and kidney for FI and pancreatic islets for FG regulation, implicated adipose tissue in FI and the gut in 2hGlu, and suggested a role for the non-endocrine pancreas in glucose homeostasis. Functional studies demonstrated that a novel FG/FI association at the liver-enriched G6PC transcript was driven by multiple rare loss-of-function variants. The FG/HbA1c-associated, islet-specific G6PC2 transcript also contained multiple rare functional variants, including two alleles within the same codon with divergent effects on glucose levels. Our findings highlight the value of integrating genomic and functional data to maximize biological inference. Highlights 23 novel coding variant associations (single-point and gene-based) for glycemic traits 51 effector transcripts highlighted different pathway/tissue signatures for each trait The exocrine pancreas and gut influence fasting and 2h glucose, respectively Multiple variants in liver-enriched G6PC and islet-specific G6PC2 influence glycemia
0
Citation11
0
Save
0

Genetic discovery and translational decision support from exome sequencing of 20,791 type 2 diabetes cases and 24,440 controls from five ancestries

Jason Flannick et al.Jul 31, 2018
Abstract Protein-coding genetic variants that strongly affect disease risk can provide important clues into disease pathogenesis. Here we report an exome sequence analysis of 20,791 type 2 diabetes (T2D) cases and 24,440 controls from five ancestries. We identify rare (minor allele frequency<0.5%) variant gene-level associations in (a) three genes at exome-wide significance, including a T2D-protective series of >30 SLC30A8 alleles, and (b) within 12 gene sets, including those corresponding to T2D drug targets ( p =6.1×10 −3 ) and candidate genes from knockout mice ( p =5.2×10 −3 ). Within our study, the strongest T2D rare variant gene-level signals explain at most 25% of the heritability of the strongest common single-variant signals, and the rare variant gene-level effect sizes we observe in established T2D drug targets will require 110K-180K sequenced cases to exceed exome-wide significance. To help prioritize genes using associations from current smaller sample sizes, we present a Bayesian framework to recalibrate association p -values as posterior probabilities of association, estimating that reaching p <0.05 ( p <0.005) in our study increases the odds of causal T2D association for a nonsynonymous variant by a factor of 1.8 (5.3). To help guide target or gene prioritization efforts, our data are freely available for analysis at www.type2diabetesgenetics.org .
0
Citation6
0
Save
Load More