AM
Aaron McDaid
Author with expertise in Genomic Studies and Association Analyses
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
22
h-index:
19
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

A Saturated Map of Common Genetic Variants Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries

Loïc Yengo et al.Jan 10, 2022
ABSTRACT Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse ancestries, that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a median size of ~90 kb, covering ~21% of the genome. The density of independent associations varies across the genome and the regions of elevated density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes, associated regions, and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely explained by linkage disequilibrium and allele frequency differences within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than needed to implicate causal genes and variants. Overall, this study, the largest GWAS to date, provides an unprecedented saturated map of specific genomic regions containing the vast majority of common height-associated variants.
3
Citation16
0
Save
57

A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids

Shweta Ramdas et al.Dec 8, 2021
Abstract A major challenge of genome-wide association studies (GWAS) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations, and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels, and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. Two prioritized genes, CREBRF and RRBP1 , show convergent evidence across functional datasets supporting their roles in lipid biology.
57
Citation1
0
Save
0

Quantifying the extent to which index event biases influence large genetic association studies

Hanieh Yaghootkar et al.Sep 12, 2016
As genetic association studies increase in size to 100,000s of individuals, subtle biases may influence conclusions. One possible bias is ″index event bias″ (IEB), also called ″collider bias″, caused by the stratification by, or enrichment for, disease status when testing associations between gene variants and a disease-associated trait. We first provided a statistical framework for quantifying IEB then identified real examples of IEB in a range of study and analytical designs. We observed evidence of biased associations for some disease alleles and genetic risk scores, even in population-based studies. For example, a genetic risk score consisting of type 2 diabetes variants was associated with lower BMI in 113,203 type 2 diabetes controls from the population based UK Biobank study (-0.010 SDs BMI per allele, P=5E-4), entirely driven by IEB. Three of 11 individual type 2 diabetes risk alleles, and 10 of 25 hypertension alleles were associated with lower BMI at p<0.05 in UK Biobank when analyzing disease free individuals only, of which six hypertension alleles remained associated at p<0.05 after correction for IEB. Our analysis suggested that the associations between CCND2 and TCF7L2 diabetes risk alleles and BMI could (at least partially) be explained by IEB. Variants remaining associated after correction may be pleiotropic and include those in CYP17A1 (allele associated with hypertension risk and lower BMI). In conclusion, IEB may result in false positive or negative associations in very large studies stratified or strongly enriched for/against disease cases.
0

Evaluation and application of summary statistic imputation to discover new height-associated loci

Sina Ruëger et al.Oct 18, 2017
As most of the heritability of complex traits is attributed to common and low frequency genetic variants, imputing them by combining genotyping chips and large sequenced reference panels is the most cost-effective approach to discover the genetic basis of these traits. Association summary statistics from genome-wide meta-analyses are available for hundreds of traits. Updating these to ever-increasing reference panels is very cumbersome as it requires reimputation of the genetic data, rerunning the association scan, and meta-analysing the results. A much more efficient method is to directly impute the summary statistics, termed as summary statistics imputation. Its performance relative to genotype imputation and practical utility has not yet been fully investigated. To this end, we compared the two approaches on real (genotyped and imputed) data from 120K samples from the UK Biobank and show that, while genotype imputation boasts a 2- to 5-fold lower root-mean-square error, summary statistics imputation better distinguishes true associations from null ones: We observed the largest differences in power for variants with low minor allele frequency and low imputation quality. For fixed false positive rates of 0.001, 0.01, 0.05, using summary statistics imputation yielded an increase in statistical power by 15, 10 and 3%, respectively. To test its capacity to discover novel associations, we applied summary statistics imputation to the GIANT height meta-analysis summary statistics covering HapMap variants, and identified 34 novel loci, 19 of which replicated using data in the UK Biobank. Additionally, we successfully replicated 55 out of the 111 variants published in an exome chip study. Our study demonstrates that summary statistics imputation is a very efficient and cost-effective way to identify and fine-map trait-associated loci. Moreover, the ability to impute summary statistics is important for follow-up analyses, such as Mendelian randomisation or LD-score regression.