NP
Niina Pitkänen
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(50% Open Access)
Cited by:
535
h-index:
24
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Association of Birth Weight With Type 2 Diabetes and Glycemic Traits

Tao Huang et al.Sep 20, 2019

Importance

 Observational studies have shown associations of birth weight with type 2 diabetes (T2D) and glycemic traits, but it remains unclear whether these associations represent causal associations. 

Objective

 To test the association of birth weight with T2D and glycemic traits using a mendelian randomization analysis. 

Design, Setting, and Participants

 This mendelian randomization study used a genetic risk score for birth weight that was constructed with 7 genome-wide significant single-nucleotide polymorphisms. The associations of this score with birth weight and T2D were tested in a mendelian randomization analysis using study-level data. The association of birth weight with T2D was tested using both study-level data (7 single-nucleotide polymorphisms were used as an instrumental variable) and summary-level data from the consortia (43 single-nucleotide polymorphisms were used as an instrumental variable). Data from 180 056 participants from 49 studies were included. 

Main Outcomes and Measures

 Type 2 diabetes and glycemic traits. 

Results

 This mendelian randomization analysis included 49 studies with 41 155 patients with T2D and 80 008 control participants from study-level data and 34 840 patients with T2D and 114 981 control participants from summary-level data. Study-level data showed that a 1-SD decrease in birth weight due to the genetic risk score was associated with higher risk of T2D among all participants (odds ratio [OR], 2.10; 95% CI, 1.69-2.61;P = 4.03 × 10−5), among European participants (OR, 1.96; 95% CI, 1.42-2.71;P = .04), and among East Asian participants (OR, 1.39; 95% CI, 1.18-1.62;P = .04). Similar results were observed from summary-level analyses. In addition, each 1-SD lower birth weight was associated with 0.189 SD higher fasting glucose concentration (β = 0.189; SE = 0.060;P = .002), but not with fasting insulin, 2-hour glucose, or hemoglobin A1cconcentration. 

Conclusions and Relevance

 In this study, a genetic predisposition to lower birth weight was associated with increased risk of T2D and higher fasting glucose concentration, suggesting genetic effects on retarded fetal growth and increased diabetes risk that either are independent of each other or operate through alterations of integrated biological mechanisms.
0
Citation42
0
Save
3

A Saturated Map of Common Genetic Variants Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries

Loïc Yengo et al.Jan 10, 2022
ABSTRACT Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse ancestries, that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a median size of ~90 kb, covering ~21% of the genome. The density of independent associations varies across the genome and the regions of elevated density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes, associated regions, and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely explained by linkage disequilibrium and allele frequency differences within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than needed to implicate causal genes and variants. Overall, this study, the largest GWAS to date, provides an unprecedented saturated map of specific genomic regions containing the vast majority of common height-associated variants.
3
Citation16
0
Save
0

Mendelian randomization analysis does not support causal associations of birth weight with hypertension risk and blood pressure in adulthood

Paul Franks et al.May 7, 2020
Epidemiology studies suggested that low birthweight was associated with a higher risk of hypertension in later life. However, little is known about the causality of such associations. In our study, we evaluated the causal association of low birthweight with adulthood hypertension following a standard analytic protocol using the study-level data of 183,433 participants from 60 studies (CHARGE-BIG consortium), as well as that with blood pressure using publicly available summary-level genome-wide association data from EGG consortium of 153,781 participants, ICBP consortium and UK Biobank cohort together of 757,601 participants. We used seven SNPs as the instrumental variable in the study-level analysis and 47 SNPs in the summary-level analysis. In the study-level analyses, decreased birthweight was associated with a higher risk of hypertension in adults (the odds ratio per 1 standard deviation (SD) lower birthweight, 1.22; 95% CI 1.16 to 1.28), while no association was found between genetically instrumented birthweight and hypertension risk (instrumental odds ratio for causal effect per 1 SD lower birthweight, 0.97; 95% CI 0.68 to 1.41). Such results were consistent with that from the summary-level analyses, where the genetically determined low birthweight was not associated with blood pressure measurements either. One SD lower genetically determined birthweight was not associated with systolic blood pressure (β = - 0.76, 95% CI - 2.45 to 1.08 mmHg), 0.06 mmHg lower diastolic blood pressure (β = - 0.06, 95% CI - 0.93 to 0.87 mmHg), or pulse pressure (β = - 0.65, 95% CI - 1.38 to 0.69 mmHg, all p > 0.05). Our findings suggest that the inverse association of birthweight with hypertension risk from observational studies was not supported by large Mendelian randomization analyses.
0
Citation9
0
Save
0

Sugar-Sweetened Beverage Consumption May Modify Associations Between Genetic Variants in the CHREBP (Carbohydrate Responsive Element Binding Protein) Locus and HDL-C (High-Density Lipoprotein Cholesterol) and Triglyceride Concentrations

Danielle Haslam et al.Aug 1, 2021
Background: ChREBP (carbohydrate responsive element binding protein) is a transcription factor that responds to sugar consumption. Sugar-sweetened beverage (SSB) consumption and genetic variants in the CHREBP locus have separately been linked to HDL-C (high-density lipoprotein cholesterol) and triglyceride concentrations. We hypothesized that SSB consumption would modify the association between genetic variants in the CHREBP locus and dyslipidemia. Methods: Data from 11 cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (N=63 599) and the UK Biobank (N=59 220) were used to quantify associations of SSB consumption, genetic variants, and their interaction on HDL-C and triglyceride concentrations using linear regression models. A total of 1606 single nucleotide polymorphisms within or near CHREBP were considered. SSB consumption was estimated from validated questionnaires, and participants were grouped by their estimated intake. Results: In a meta-analysis, rs71556729 was significantly associated with higher HDL-C concentrations only among the highest SSB consumers (β, 2.12 [95% CI, 1.16–3.07] mg/dL per allele; P <0.0001), but not significantly among the lowest SSB consumers ( P =0.81; P Diff <0.0001). Similar results were observed for 2 additional variants (rs35709627 and rs71556736). For triglyceride, rs55673514 was positively associated with triglyceride concentrations only among the highest SSB consumers (β, 0.06 [95% CI, 0.02–0.09] ln-mg/dL per allele, P =0.001) but not the lowest SSB consumers ( P =0.84; P Diff =0.0005). Conclusions: Our results identified genetic variants in the CHREBP locus that may protect against SSB-associated reductions in HDL-C and other variants that may exacerbate SSB-associated increases in triglyceride concentrations. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT00005133, NCT00005121, NCT00005487, and NCT00000479.
0
Citation8
0
Save
57

A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids

Shweta Ramdas et al.Dec 8, 2021
Abstract A major challenge of genome-wide association studies (GWAS) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations, and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels, and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. Two prioritized genes, CREBRF and RRBP1 , show convergent evidence across functional datasets supporting their roles in lipid biology.
57
Citation1
0
Save
0

Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors

Nicole Warrington et al.Oct 17, 2018
Birth weight (BW) variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. These associations have been proposed to reflect the lifelong consequences of an adverse intrauterine environment. In earlier work, we demonstrated that much of the negative correlation between BW and adult cardio-metabolic traits could instead be attributable to shared genetic effects. However, that work and other previous studies did not systematically distinguish the direct effects of an individual's own genotype on BW and subsequent disease risk from indirect effects of their mother's correlated genotype, mediated by the intrauterine environment. Here, we describe expanded genome-wide association analyses of own BW (n=321,223) and offspring BW (n=230,069 mothers), which identified 278 independent association signals influencing BW (214 novel). We used structural equation modelling to decompose the contributions of direct fetal and indirect maternal genetic influences on BW, implicating fetal- and maternal-specific mechanisms. We used Mendelian randomization to explore the causal relationships between factors influencing BW through fetal or maternal routes, for example, glycemic traits and blood pressure. Direct fetal genotype effects dominate the shared genetic contribution to the association between lower BW and higher type 2 diabetes risk, whereas the relationship between lower BW and higher later blood pressure (BP) is driven by a combination of indirect maternal and direct fetal genetic effects: indirect effects of maternal BP-raising genotypes act to reduce offspring BW, but only direct fetal genotype effects (once inherited) increase the offspring's later BP. Instrumental variable analysis using maternal BW-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring BP. In successfully separating fetal from maternal genetic effects, this work represents an important advance in genetic studies of perinatal outcomes, and shows that the association between lower BW and higher adult BP is attributable to genetic effects, and not to intrauterine programming.
0

Multivariate genome-wide association analysis of a cytokine network reveals variants with widespread immune, haematological and cardiometabolic pleiotropy

Artika Nath et al.Feb 8, 2019
Cytokines are essential regulatory components of the immune system and their aberrant levels have been linked to many disease states. Despite increasing evidence that cytokines operate in concert, many of the physiological interactions between cytokines, and the shared genetic architecture that underlie them, remain unknown. Here we aimed to identify and characterise genetic variants with pleiotropic effects on cytokines - to do this we performed a multivariate genome-wide association study on a correlation network of 11 circulating cytokines measured in 9,263 individuals. Meta-analysis identified a total of 8 loci significantly associated with the cytokine network, of which two (PDGFRB and ABO) had not been detected previously. Bayesian colocalisation analysis revealed shared causal variants between the eight cytokine loci and other traits; in particular, cytokine network variants at the ABO, SERPINE2, and ZFPM2 loci showed pleiotropic effects on the production of immune-related proteins; on metabolic traits such as lipoprotein and lipid levels; on blood-cell related traits such as platelet count; and on disease traits such as coronary artery disease and type 2 diabetes.
Load More