TS
Teresa Street
Author with expertise in RNA Sequencing Data Analysis
University of Oxford, John Radcliffe Hospital, Oxford BioMedica (United Kingdom)
+ 3 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
14
h-index:
18
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
58

Comparison of R9.4.1/Kit10 and R10/Kit12 Oxford Nanopore flowcells and chemistries in bacterial genome reconstruction

Nicholas Sanderson et al.Oct 24, 2023
+6
G
N
N
2. Abstract Complete, accurate, cost-effective, and high-throughput reconstruction of bacterial genomes for large-scale genomic epidemiological studies is currently only possible with hybrid assembly, combining long- (typically using nanopore sequencing) and short-read (Illumina) datasets. Being able to utilise nanopore-only data would be a significant advance. Oxford Nanopore Technologies (ONT) have recently released a new flowcell (R10.4) and chemistry (Kit12), which reportedly generate per-read accuracies rivalling those of Illumina data. To evaluate this, we sequenced DNA extracts from four commonly studied bacterial pathogens, namely Escherichia coli , Klebsiella pneumoniae , Pseudomonas aeruginosa and Staphylococcus aureus , using Illumina and ONT’s R9.4.1/Kit10, R10.3/Kit12, R10.4/Kit12 flowcells/chemistries. We compared raw read accuracy and assembly accuracy for each modality, considering the impact of different nanopore basecalling models, commonly used assemblers, sequencing depth, and the use of duplex versus simplex reads. “Super accuracy” (sup) basecalled R10.4 reads - in particular duplex reads - have high per-read accuracies and could be used to robustly reconstruct bacterial genomes without the use of Illumina data. However, the per-run yield of duplex reads generated in our hands with standard sequencing protocols was low (typically <10%), with substantial implications for cost and throughput if relying on nanopore data only to enable bacterial genome reconstruction. In addition, recovery of small plasmids with the best-performing long-read assembler (Flye) was inconsistent. R10.4/Kit12 combined with sup basecalling holds promise as a singular sequencing technology in the reconstruction of commonly studied bacterial genomes, but hybrid assembly (Illumina+R9.4.1 hac) currently remains the highest throughput, most robust, and cost-effective approach to fully reconstruct these bacterial genomes. 3. Impact statement Our understanding of microbes has been greatly enhanced by the capacity to evaluate their genetic make-up using a technology known as whole genome sequencing. Sequencers represent microbial genomes as stretches of shorter sequence known as ‘reads’, which are then assembled using computational algorithms. Different types of sequencing approach have advantages and disadvantages with respect to the accuracy and length of the reads they generate; this in turn affects how reliably genomes can be assembled. Currently, to completely reconstruct bacterial genomes in a high-throughput and cost-effective manner, researchers tend to use two different types of sequencing data, namely Illumina (short-read) and nanopore (long-read) data. Illumina data are highly accurate; nanopore data are much longer, and this combination facilitates accurate and complete bacterial genomes in a so-called “hybrid assembly”. However, new developments in nanopore sequencing have reportedly greatly improved the accuracy of nanopore data, hinting at the possibility of requiring only a single sequencing approach for bacterial genomics. Here we evaluate these improvements in nanopore sequencing in the reconstruction of four bacterial reference strains, where the true sequence is already known. We show that although these improvements are extremely promising, for high-throughput, low-cost complete reconstruction of bacterial genomes hybrid assembly currently remains the optimal approach. 4. Data summary The authors confirm all supporting data, code and protocols have been provided within the article, through supplementary data files, or in publicly accessible repositories. Nanopore fast5 and fastq data are available in the ENA under project accession: PRJEB51164. Assemblies have been made available at: https://figshare.com/articles/online_resource/q20_comparison_genome_assemblies/196838 67. Code and analysis outputs are available at: https://gitlab.com/ModernisingMedicalMicrobiology/assembly_comparison_analysis/-/tree/main (tagged version v0.5.5).
0

Addressing pandemic-wide systematic errors in the SARS-CoV-2 phylogeny

Martin Hunt et al.May 28, 2024
+92
D
A
M
The SARS-CoV-2 genome occupies a unique place in infection biology -- it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites. In combination with the disparate set of genome assembly workflows and lack of consistent quality control (QC) processes, the current genomes have many systematic errors that have evolved with the virus and amplicon schemes. These errors have significant impacts on the phylogeny, and therefore over the last few years, many thousands of hours of researchers time has been spent in "eyeballing" trees, looking for artefacts, and then patching the tree. Given the huge value of this dataset, we therefore set out to reprocess the complete set of public raw sequence data in a rigorous amplicon-aware manner, and build a cleaner phylogeny. Here we provide a global tree of 3,960,704 samples, built from a consistently assembled set of high quality consensus sequences from all available public data as of March 2023, viewable at https://viridian.taxonium.org. Each genome was constructed using a novel assembly tool called Viridian (https://github.com/iqbal-lab-org/viridian), developed specifically to process amplicon sequence data, eliminating artefactual errors and mask the genome at low quality positions. We provide simulation and empirical validation of the methodology, and quantify the improvement in the phylogeny. Phase 2 of our project will address the fact that the data in the public archives is heavily geographically biased towards the Global North. We therefore have contributed new raw data to ENA/SRA from many countries including Ghana, Thailand, Laos, Sri Lanka, India, Argentina and Singapore. We will incorporate these, along with all public raw data submitted between March 2023 and the current day, into an updated set of assemblies, and phylogeny. We hope the tree, consensus sequences and Viridian will be a valuable resource for researchers.
0
0
Save
0

Molecular diagnosis of orthopaedic device infection direct from sonication fluid by metagenomic sequencing

Teresa Street et al.May 7, 2020
+10
B
N
T
Culture of multiple periprosthetic tissue samples is the current gold-standard for microbiological diagnosis of prosthetic joint infections (PJI). Additional diagnostic information may be obtained through sonication fluid culture of explants. However, current techniques can have relatively low sensitivity, with prior antimicrobial therapy and infection by fastidious organisms influencing results. We assessed if metagenomic sequencing of complete bacterial DNA extracts obtained direct from sonication fluid can provide an alternative rapid and sensitive tool for diagnosis of PJI. We compared metagenomic sequencing with standard aerobic and anaerobic culture in 97 sonication fluid samples from prosthetic joint and other orthopaedic device infections. Reads from Illumina MiSeq sequencing were taxonomically classified using Kraken. Using 50 samples (derivation set), we determined optimal thresholds for the number and proportion of bacterial reads required to identify an infection and validated our findings in 47 independent samples. Compared to sonication fluid culture, the species-level sensitivity of metagenomic sequencing was 61/69(88%,95%CI 77-94%) (derivation samples 35/38[92%,79-98%]; validation 26/31[84%,66-95%]), and genus-level sensitivity was 64/69(93%,84-98%). Species-level specificity, adjusting for plausible fastidious causes of infection, species found in concurrently obtained tissue samples, and prior antibiotics, was 85/97(88%,79-93%) (derivation 43/50[86%,73-94%], validation 42/47[89%,77-96%]). High levels of human DNA contamination were seen despite use of laboratory methods to remove it. Rigorous laboratory good practice was required to prevent bacterial DNA contamination. We demonstrate metagenomic sequencing can provide accurate diagnostic information in PJI. Our findings combined with increasing availability of portable, random-access sequencing technology offers the potential to translate metagenomic sequencing into a rapid diagnostic tool in PJI.
0

Optimizing DNA extraction methods for Nanopore sequencing of Neisseria gonorrhoeae direct from urine samples

Teresa Street et al.May 7, 2020
+16
N
L
T
Background : Empirical gonorrhoea treatment at initial diagnosis reduces onward transmission. However, increasing resistance to multiple antibiotics may necessitate waiting for culture-based diagnostics to select an effective treatment. There is a need for same-day culture-free diagnostics that identify infection and detect antimicrobial resistance. Methods: We investigated if Nanopore sequencing can detect sufficient N. gonorrhoeae DNA to reconstruct whole genomes directly from urine samples. We used N. gonorrhoeae spiked urine samples and samples from gonorrhoea infections to determine optimal DNA extraction methods that maximize the amount of N. gonorrhoeae DNA sequenced whilst minimizing contaminating host DNA. Results: In simulated infections the Qiagen UCP Pathogen Mini kit provided the highest ratio N. gonorrhoeae to human DNA and the most consistent results. Depletion of human DNA with saponin increased N. gonorrhoeae yields in simulated infections, but decreased yields in clinical samples. In ten urine samples from men with symptomatic urethral gonorrhoea, ≥87% coverage of an N. gonorrhoeae reference genome was achieved in all samples, with ≥92% coverage breath at ≥10-fold depth in 7 (70%) samples. In simulated infections if ≥104 CFU/ml of N. gonorrhoeae was present, sequencing of the large majority of the genome was frequently achieved. N. gonorrhoeae could also be detected from urine in cobas PCR Media tubes and from urethral swabs, and in the presence of simulated Chlamydia co-infection. Conclusion: Using Nanopore sequencing of urine samples from men with urethral gonorrhoea sufficient data can be obtained to reconstruct whole genomes in the majority of samples without the need for culture.
0

High precision Neisseria gonorrhoeae variant and antimicrobial resistance calling from metagenomic Nanopore sequencing

Nicholas Sanderson et al.May 7, 2020
+5
L
J
N
The rise of antimicrobial resistant Neisseria gonorrhoeae is a significant public health concern. Against this background, rapid culture-independent diagnostics may allow targeted treatment and prevent onward transmission. We have previously shown metagenomic sequencing of urine samples from men with urethral gonorrhoea can recover near-complete N. gonorrhoeae genomes. However, disentangling the N. gonorrhoeae genome from metagenomic samples and robustly identifying antimicrobial resistance determinants from error-prone Nanopore sequencing is a substantial bioinformatics challenge. Here we demonstrate an N. gonorrhoeae diagnostic workflow for analysis of metagenomic sequencing data obtained from clinical samples using R9.4.1 Nanopore sequencing. We compared results from simulated and clinical infections with data from known reference strains and Illumina sequencing of isolates cultured from the same patients. We evaluated three Nanopore variant callers and developed a random forest classifier to filter called SNPs. Clair was the most suitable variant caller after SNP filtering. A minimum depth of 20x reads was required to confidently identify resistant determinants over the entire genome. Our findings show that metagenomic Nanopore sequencing can provide reliable diagnostic information in N. gonorrhoeae infection.