Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a wide range of criteria being applied to say that an assay has been successfully developed. There is no consensus on what criteria are acceptable and little understanding of the impact of variable criteria on the quality of the results generated. Publications describing targeted MS assays for peptides frequently do not contain sufficient information for readers to establish confidence that the tests work as intended or to be able to apply the tests described in their own labs. Guidance must be developed so that targeted MS assays with established performance can be made widely distributed and applied by many labs worldwide. To begin to address the problems and their solutions, a workshop was held at the National Institutes of Health with representatives from the multiple communities developing and employing targeted MS assays. Participants discussed the analytical goals of their experiments and the experimental evidence needed to establish that the assays they develop work as intended and are achieving the required levels of performance. Using this “fit-for-purpose” approach, the group defined three tiers of assays distinguished by their performance and extent of analytical characterization. Computational and statistical tools useful for the analysis of targeted MS results were described. Participants also detailed the information that authors need to provide in their manuscripts to enable reviewers and readers to clearly understand what procedures were performed and to evaluate the reliability of the peptide or protein quantification measurements reported. This paper presents a summary of the meeting and recommendations. Adoption of targeted mass spectrometry (MS) approaches such as multiple reaction monitoring (MRM) to study biological and biomedical questions is well underway in the proteomics community. Successful application depends on the ability to generate reliable assays that uniquely and confidently identify target peptides in a sample. Unfortunately, there is a wide range of criteria being applied to say that an assay has been successfully developed. There is no consensus on what criteria are acceptable and little understanding of the impact of variable criteria on the quality of the results generated. Publications describing targeted MS assays for peptides frequently do not contain sufficient information for readers to establish confidence that the tests work as intended or to be able to apply the tests described in their own labs. Guidance must be developed so that targeted MS assays with established performance can be made widely distributed and applied by many labs worldwide. To begin to address the problems and their solutions, a workshop was held at the National Institutes of Health with representatives from the multiple communities developing and employing targeted MS assays. Participants discussed the analytical goals of their experiments and the experimental evidence needed to establish that the assays they develop work as intended and are achieving the required levels of performance. Using this “fit-for-purpose” approach, the group defined three tiers of assays distinguished by their performance and extent of analytical characterization. Computational and statistical tools useful for the analysis of targeted MS results were described. Participants also detailed the information that authors need to provide in their manuscripts to enable reviewers and readers to clearly understand what procedures were performed and to evaluate the reliability of the peptide or protein quantification measurements reported. This paper presents a summary of the meeting and recommendations. Targeted mass spectrometry (MS) approaches have tremendous promise for specific, reproducible and quantitative measurement of changes in the levels of proteins, peptides, and modified peptides of interest to biologists and biomedical researchers (1Gillette M.A. Carr S.A. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry.Nat Methods. 2013; 10: 28-34Crossref PubMed Scopus (359) Google Scholar, 2Picotti P. Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions.Nat. Methods. 2012; 9: 555-566Crossref PubMed Scopus (991) Google Scholar, 3Grebe S.K.G. Singh R.J.J. LC-MS/MS in the clinical laboratory—where to from here? Clin.Biochem. Rev. 2011; 32: 5-31Google Scholar and references therein). Adoption of targeted MS to study biological and clinical questions is well underway in the biomedical community with the assumption being that the measurements made using targeted MS methods are reliable, that is that they specifically identify and quantify the analytes targeted in a sample. In the field of proteomics, umbrella terms like “multiple reaction monitoring”, “selected reaction monitoring” (MRM 1The abbreviations used are:MRMmultiple reaction monitoringSRMselected reaction monitoringLODlimits of detectionLOQlimits of quantificationLLOQlower limits of quantification. 1The abbreviations used are:MRMmultiple reaction monitoringSRMselected reaction monitoringLODlimits of detectionLOQlimits of quantificationLLOQlower limits of quantification. and SRM, respectively; terms used interchangeably), “absolute quantification” and “targeted MS” can convey the erroneous message that the results are unquestionably correct with respect to what is being detected and how much is present. This is certainly not true, and is dependent on the extent to which the measurements have been analytically validated. multiple reaction monitoring selected reaction monitoring limits of detection limits of quantification lower limits of quantification. multiple reaction monitoring selected reaction monitoring limits of detection limits of quantification lower limits of quantification. The most widely used targeted MS approach at present is MRM (1Gillette M.A. Carr S.A. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry.Nat Methods. 2013; 10: 28-34Crossref PubMed Scopus (359) Google Scholar, 2Picotti P. Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions.Nat. Methods. 2012; 9: 555-566Crossref PubMed Scopus (991) Google Scholar, 3Grebe S.K.G. Singh R.J.J. LC-MS/MS in the clinical laboratory—where to from here? Clin.Biochem. Rev. 2011; 32: 5-31Google Scholar). Unlike discovery proteomics experiments in which full-scan MS/MS spectra are collected, in MRM only three to five fragment ions per-precursor are monitored, typically on triple quadrupole MS systems, the most widely available MS instruments in clinical and drug metabolism laboratories. The fragment ions monitored are generally those that are most abundant rather than those that are most sequence informative; as a result there is little-to-no sequence information in MRM data. Furthermore, in complex matrices like plasma, tissue or cell lysates, peptides with the same or similar precursor mass-to-charge ratio (e.g. ±1.5 in m/z) to an analyte of interest can give rise to many and sometimes all of the three to five fragment ions monitored for a specific analyte, resulting in false positives. Therefore, it is essential that other information be used to increase confidence in assignment and quantification in targeted MS experiments. In contrast to the long and well developed history of MS-based assay development for small molecules, drugs and metabolites (3Grebe S.K.G. Singh R.J.J. LC-MS/MS in the clinical laboratory—where to from here? Clin.Biochem. Rev. 2011; 32: 5-31Google Scholar, 4Lawson A.M. The scope of mass spectrometry in clinical chemistry.Clin. Chem. 1975; 21: 803-824Crossref PubMed Scopus (48) Google Scholar, 5Parsons H.G. Stable isotopes in the management and diagnosis of inborn errors of metabolism.Can. J. Physiol. Pharmacol. 1990; 68: 950-954Crossref PubMed Scopus (3) Google Scholar, 6Brumley W.C. Sphon J.A. Regulatory mass spectrometry.Biomed. Mass Spectrom. 1981; 8: 390-396Crossref PubMed Scopus (13) Google Scholar, 7Sphon J.A. Use of mass spectrometry for confirmation of animal drug residues.J. Assoc. Off. Anal. Chem. 1978; 61: 1247-1252PubMed Google Scholar, 8Vargo J.D. Determination of sulfonic acid degradates of chloroacetanilide and chloroacetamide herbicides in groundwater by LC/MS/MS.Anal. Chem. 1998; 70: 2699-2703Crossref PubMed Scopus (45) Google Scholar, 9Kuhara T. Noninvasive human metabolome analysis for differential diagnosis of inborn errors of metabolism.J. Chromatog. 2007; 855: 42-50Google Scholar, 10Pitt J.J. Eggington M. Kahler S.G. Comprehensive screening of urine samples from inborn errors of metabolism by electrospray tandem mass spectrometry.Clin. Chem. 2002; 48: 1970-1980Crossref PubMed Scopus (96) Google Scholar), consensus on what performance criteria are essential to define for peptide and protein assay development has yet to be achieved. This has led to a range of problems that continue to plague the development of reliable proteomic assays for both clinical and biological studies. For example, currently, a wide range of criteria are being applied in the proteomics community to assert that an assay has been successfully developed and that analytes of interest are being confidently detected and changes in their levels reliably quantified. Proteomics scientists are only slowly implementing practices in targeted, quantitative assay development that have been learned and adopted by the small molecule community (11Timmerman P. Anders Kall M. Gordon B. Laakso S. Freisleben A. Hucker R. Best practices in a tiered approach to metabolite quantification: Views and recommendations of the European Bioanalysis Forum.Bioanalysis. 2010; 2: 1185-1194Crossref PubMed Scopus (65) Google Scholar, 12Timmerman P. Herling C. Stoellner D. Jaitner B. Pihl S. Elsby K. Henderson N. Barroso B. Fischmann S. Companjen A. Versteilen A. Bates S. Kingsley C. Kunz U. European Bioanalysis Forum recommendation on method establishment and bioanalysis of biomarkers in support of drug development.Bioanalysis. 2012; 4: 1883-1894Crossref PubMed Scopus (45) Google Scholar, 13Timmerman P. Lausecker B. Barosso B. van Amsterdam P. Luedtke S. Dijksman J. ‘Large Meets Small’: connecting the bioanalytical community around peptide and protein bioanalysis with LC-MS(/MS).Bioanalysis. 2012; 4: 627-631Crossref PubMed Scopus (12) Google Scholar). Equally troubling is that targeted-MS papers are being published without clear and complete documentation of the analytical methods used or the assay performance, making it difficult if not impossible for reviewers and readers to have confidence that the tests work as intended to apply the tests described in their own labs with an expectation that similar results can be achieved. Therefore, we assert that strong, consensus guidance must be developed addressing quality assay development, if targeted proteomics is going to have the impact we all desire it to have, providing accurate, reliable assays of known performance metrics that can be widely distributed and applied by many labs worldwide. To begin to address the problems and their solutions, a workshop was held June 18 and 19, 2013 at the National Institutes of Health under the auspices of the National Cancer Institute (CPTAC - Clinical Proteomic Tumor Analysis Consortium) and National Heart, Lung, and Blood Institute (Proteomics Centers). Representatives from the multiple communities developing and employing targeted assays were present, including in vitro diagnostic companies, clinical laboratories, labs specializing in quantitative assay development for candidate biomarker verification and biology-focused labs. Investigators with long experience in the application of targeted MS methods for quantification of small molecules were invited to provide a review of the decades of practice and application of MRM in small molecule quantification, providing a foundation to principles that are equally applicable to the proteomic applications under discussion. Speakers and participants were asked to use a “fit-for-purpose” approach by identifying the analytical goals of their experiments and then to describe the performance characteristics required for success (14Thompson M. Ramsey M.H. Quality concepts and practices applies to sampling – an exploratory study.Analyst. 1995; 120: 261-270Crossref Scopus (89) Google Scholar, 15Bethem R. Boyd R.K. Mass spectrometry in trace analysis.J. Amer. Soc. Mass Spectrom. 1998; 9: 643-648Crossref Scopus (28) Google Scholar, 16Bethem R. Boison J. Gale J. Heller D. Lehotay S. Loo J. Musser S. Price P. Stein S. Establishing the fitness for purpose of mass spectrometric methods.J. Amer. Soc. Mass Spectrom. 2003; 14: 528-541Crossref PubMed Scopus (77) Google Scholar, 17Lee J.W. Devanarayan V. Barrett Y.C. Weiner R. Allinson J. Fountain S. Keller S. Weinryb I. Green M. Duan L. Rogers J.A. Millham R. O'Brien P.J. Sailstad J. Khan M. Ray C. Wagner J.A. Fit-for-purpose method development and validation for successful biomarker measurement.Pharm. Res. 2006; 23: 312-328Crossref PubMed Scopus (612) Google Scholar, 18Lee J.W. Figeys D. Vasilescu J. Biomarker assay translation from discovery to clinical studies in cancer drug development: quantification of emerging protein biomarkers.Adv. Cancer Res. 2007; 96: 269-298Crossref PubMed Scopus (69) Google Scholar, 19Cummings J. Raynaud F. Jones L. Sugar R. Dive C. on behalf of the Bioanalysis and Quality Assurance (BAQA) Group of the ECMCFit-for-purpose biomarker method validation for application in clinical trials of anticancer drugs.Br. J. Cancer. 2010; 103: 1313-1317Crossref PubMed Scopus (85) Google Scholar). Based on the goals of the measurements, we next sought to identify the experimental evidence (i.e. the “analytical validation” steps) needed to establish that the assays reported are working as intended and are achieving the required levels of performance (including the test's repeatability, reproducibility, limits of detection, analytical specificity, etc.). Computational and statistical tools useful for the analysis of targeted MS results, including generation of response/calibration curves, determination of limits of detection and quantification (LOD and LOQ, respectively), were discussed. This process led to the identification of three “Tiers” of assays/measurements that are described in detail, below. Participants were also asked to identify what information authors need to provide in their manuscripts to enable reviewers and readers to clearly understand what procedures were performed and to evaluate the reliability of the peptide or protein quantification measurements reported. We present a summary of those recommendations, below. As follow-on to the workshop and this report, Molecular and Cellular Proteomics intends to develop guidelines for authors of papers describing development and/or application of targeted MS methods. The need for establishing guidelines for authors parallels the situation in discovery proteomics before 2004 when similar issues relating to lack of ability to ascertain reliability of published results prompted the journal Molecular and Cellular Proteomics to develop and adopt the first set of guidelines for publication of peptide and protein identification data using mass spectrometry (20Carr S.A. Aebersold R. Baldwin M. Burlingame A. Clauser K. Nesvizhski A. The need for guidelines in publication of peptide and protein identification data.Mol. Cell. Proteomics. 2004; 3: 531-533Abstract Full Text Full Text PDF PubMed Scopus (412) Google Scholar). These guidelines, which have been repeatedly revised and updated over the past several years (21Bradshaw R.A. Burlingame A.L. Carr S. Aebersold R. Reporting protein identification data: the next generation of guidelines.Mol. Cell. Proteomics. 2006; 5: 787-788Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 22Chalkley R.J. Clauser K.R. Carr S.A. Updating the MCP Proteomic publication guidelines.ASBMB Today. 2009; : 16-17Google Scholar, 23http://www.mcponline.org.libproxy.mit.edu/site/misc/PhialdelphiaGuidelinesFINALDRAFT.pdfGoogle Scholar), have been embraced in whole or in part by other proteomics journals. The goal then, as it is now, was to try to ensure that reliable, high quality data and results are entering the proteomics literature. The group identified three tiers of targeted MS assays/measurements based on the intended purpose of the measurements (“fit for purpose” concept) and then worked to define the extent of analytical validation required in each Tier (Table I). A list of speakers, presentations, and discussion groups is available in supplemental Materials.Table IThree Tiers of Targeted MS Measurements; experimental design parameters and assay characteristics are listed for each tier Andy Hoofnagle, University of Washington and Russell Grant, Laboratory Corporation of America led the discussion around Tier 1. The goals of developing and applying Tier 1 assays are to (1) provide accurate, precise, clinically actionable information for medical practitioners or (2) inform decision-making in the development of drugs for human use. In pharmaceutical applications the goals include quantifying proteins targeted by therapeutics, assessment of target engagement (free, complex, total) in preclinical and proof of concept studies, and measurement of mechanistic, protein biomarkers that are proximal to the target/site of action to examine pharmacodynamics. Depending on the use of the assay data, these tests may need to meet the requirements of the Clinical Laboratory Improvement Amendments of 1988 (CLIA), the US Food and Drug Administration (FDA), or the European Medicines Agency (EMA) (for example, see 24Guidance for Industry: Bioanalytical Method Validation. (2001) US Department of Health and Human Services, US FDA, Center for Drug Evaluation and Research, Rockville, MD, U.S.A. (Rev. 1, September, 2013)Google Scholar, 25Guideline on Bioanalytical Method Validation. EMA, Committee for Medicinal Products for Human Use, London, UK2011Google Scholar). Guidance from these agencies and accrediting organizations, as well as those from the Clinical and Laboratory Standards Institute (http://www.clsi.org) continues to evolve and be clarified, especially for newer approaches in protein analysis, like targeted MS. These changes and clarifications are driven, in part, through dialog and interaction among the pharmaceutical, diagnostic companies, and regulatory agencies all working to improve assay quality when it pertains, even indirectly, to the care of patients (for example, see 26DeSilvaWhite paper on recent issues in bioanalysis and alignment of multiple guidelines.Bioanalysis. 2012; 4: 2213-2226Crossref PubMed Scopus (83) Google Scholar). The goal is to provide complete, high-quality data for review for regulatory purposes. The use of stable isotope-labeled internal standards provides the highest level of detection confidence and measurement precision in targeted MS experiments (26DeSilvaWhite paper on recent issues in bioanalysis and alignment of multiple guidelines.Bioanalysis. 2012; 4: 2213-2226Crossref PubMed Scopus (83) Google Scholar, 27Barr J.R. Maggio V.L. Patterson Jr., D.G. Cooper G.R. Henderson L.O. Turner W.E. et al.Isotope dilution–mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I.Clin Chem. 1996; 42: 1676-1682Crossref PubMed Scopus (321) Google Scholar, 28Gerber S.A. Rush J. Stemman O. Kirschner M.W. Gygi S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS.Proc. Nat. Acad. Sci. 2003; 100: 6940-6945Crossref PubMed Scopus (1542) Google Scholar, 29Keshishian H. Addona T. Burgess M. Kuhn E. Carr S.A. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution.Mol. Cell. Proteomics. 2007; 2: 2212Abstract Full Text Full Text PDF Scopus (576) Google Scholar, 30Berna M.J. Ott L. Engle S. Watson D. Solter P. Ackermann B. Quantification of NTproBNP in rat serum using immunoprecipitation and LC/MS/MS: a Biomarker of drug-induced cardiac hypertrophy.Anal. Chem. 2008; 80: 561-566Crossref PubMed Scopus (58) Google Scholar, 31Addona T.A. Abbatiello S.E. Schilling B. Skates S.J. Mani D.R. Bunk D.M. Spiegelman C.H. Zimmerman L.J. Ham A.J.L. Keshishian H. Hall S.C. Allen S. Blackman R.K. Borchers C.H. Buck C. Cardasis H.L. Cusack M.P. Dodder N.G. Gibson B.W. Held J.M. Hiltke T. Jackson A. Johansen E.B. Kinsinger C.R. Li J. Mesri M. Neubert T.A. Niles R.K. Pulsipher T.C. Ransohoff D. Rodriguez H. Rudnick P.A. Smith D. Tabb D.L. Tegeler T.J. Variyath A.M. Vega-Montoto L.J. Wahlander A. Waldemarson S. Wang M. Whiteaker J.R. Zhao L. Anderson N.L. Fisher S.J. Liebler D.C. Paulovich A.G. Regnier F.E. Tempst P. Carr S.A. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma.Nat. Biotechnol. 2009; 27: 633-685Crossref PubMed Scopus (862) Google Scholar, 32Picotti P. Bodenmiller B. Mueller L.N. Domon B. Aebersold R. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics.Cell. 2009; 138 (doi: 10.1016/j.cell.2009.05.051. Epub 2009 Aug 6): 795-806Abstract Full Text Full Text PDF PubMed Scopus (647) Google Scholar, 33Whiteaker J.R. Zhao L. Abbatiello S.E. Burgess M. Kuhn E. Lin C.W. Pope M.E. Razavi M. Anderson N.L. Pearson T.W. Carr S.A. Paulovich A.G. Evaluation of large scale quantitative proteomic assay development using peptide affinity-based mass spectrometry.Mol. Cell. Proteomics. 2011; 10 (M110.005645)Abstract Full Text Full Text PDF PubMed Scopus (119) Google Scholar, 34Shi T. Fillmore T.L. Sun X. Zhao R. Schepmoes A.A. Hossain M. Xie F. Wu S. Kim J.S. Jones N. Moore R.J. Pasa-Tolic L. Kagan J. Rodland K.D. Liu T. Tang K. Camp D.G. Smith R.D. Qian W.J. Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum.Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 15395-15400Crossref PubMed Scopus (171) Google Scholar, 35Wang Q. Chaerkady R. Wu J. Hwang H.J. Papadopoulos N. Kopelovich L. Maitra. A. Matthaei H. Eshleman J.R. Hruban R.H. Kinzler K.W. Pandey A. Vogelstein B. Mutant proteins as cancer-specific biomarkers.Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 2444-2449Crossref PubMed Scopus (140) Google Scholar, 36Addona T.A. Shi X. Keshishian H. Mani D.R. Burgess M. Gillette M.A. Clauser K.R. Shen D. Lewis G.D. Farrell L.A. Fifer M.A. Sabatine M.S. Gerszten R.E. Carr S.A. A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease.Nat. Biotechnol. 2011; 29: 635-643Crossref PubMed Scopus (202) Google Scholar, 37Whiteaker J.R. Lin C. Kennedy J. Hou L. Trute M. Sokal I. Yan P. Schoenherr R.M. Zhao L. Voytovich U.J. Kelly-Spratt K.S. Krasnoselsky A. Gafken P.R. Hogan J.M. Jones L.A. Wang P. Amon L. Chodosh L.A. Nelson P.S. McIntosh M.W. Kemp C.J. Paulovich A.G. A targeted proteomics-based pipeline for verification of biomarkers in plasma.Nat. Biotech. 2011; 29: 625-634Crossref PubMed Scopus (291) Google Scholar, 38Domanski D. Percy A.J. Yang J. Chambers A.G. Hill J.S. Freue G.V. Borchers C.H. MRM-based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma.Proteomics. 2012; 12: 1222-1243Crossref PubMed Scopus (172) Google Scholar, 39Pan S. Chen R. Brand R.E.. Hawley S. Tamura Y. Gafken P.R. Milless B.P. Goodlett D.R. Rush J. Brentnall T.A. Multiplex targeted proteomic assay for biomarker detection in plasma: A pancreatic cancer biomarker case study.J. Proteome Res. 2012; 11: 1937-1948Crossref PubMed Scopus (73) Google Scholar, 40Huttenhain R. Soste M. Selevsek N. Rost H. Sethi A. Carapito C.. Farrah T. Deutsch E.W. Kusebauch U. Moritz R.L. Nimeus-Malmstrom E. Rinner O. Aebersold R. Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics.Sci. Transl. Med. 2012; 4: 1-13Crossref Scopus (208) Google Scholar, 41Kushnir M.M. Rockwood A.L. Roberts W.L. Abraham D. Hoofnagle A.N. Meikle A.W. Measurement of thyroglobulin by liquid chromatography-tandem mass spectrometry in serum and plasma in the presence of antithyroglobulin autoantibodies.Clinical Chemistry. 2013; 59: 982-990Crossref PubMed Scopus (141) Google Scholar, 42Neubert H. Muirhead D. Kabir M. Grace C. Cleton A. Arends R. Sequential protein and peptide immunoaffinity capture for mass spectrometry-based quantification of total human beta-nerve growth factor.Anal. Chem. 2013; 85: 1719-1726Crossref PubMed Scopus (100) Google Scholar). This approach, adopted from the field of small molecule quantitative analysis, is known as Stable Isotope Dilution (43Rifai N. Gillette M.A. Carr S.A. Protein biomarker discovery and validation: the long and uncertain path to clinical utility.Nat. Biotechnol. 2006; 24: 971-983Crossref PubMed Scopus (1367) Google Scholar, 44Brun V. Masselon C. Garin J. Dupuis A. Isotope dilution strategies for absolute quantitative proteomics.J. Proteomics. 2009; 72: 740-749Crossref PubMed Scopus (262) Google Scholar). In Tier 1, best practice would dictate the use of stable isotope-labeled internal standards for each target analyte. Labeled analog proteins can also be used as internal standards if properly characterized and validated. Internal standards are ideally included to control for the fate of analytes through the analytical process, which enables more precise quantification. Assay precision can be strongly affected by variations in sample processing, especially by the enzymatic digestion conditions used (31Addona T.A. Abbatiello S.E. Schilling B. Skates S.J. Mani D.R. Bunk D.M. Spiegelman C.H. Zimmerman L.J. Ham A.J.L. Keshishian H. Hall S.C. Allen S. Blackman R.K. Borchers C.H. Buck C. Cardasis H.L. Cusack M.P. Dodder N.G. Gibson B.W. Held J.M. Hiltke T. Jackson A. Johansen E.B. Kinsinger C.R. Li J. Mesri M. Neubert T.A. Niles R.K. Pulsipher T.C. Ransohoff D. Rodriguez H. Rudnick P.A. Smith D. Tabb D.L. Tegeler T.J. Variyath A.M. Vega-Montoto L.J. Wahlander A. Waldemarson S. Wang M. Whiteaker J.R. Zhao L. Anderson N.L. Fisher S.J. Liebler D.C. Paulovich A.G. Regnier F.E. Tempst P. Carr S.A. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma.Nat. Biotechnol. 2009; 27: 633-685Crossref PubMed Scopus (862) Google Scholar, 45Kuzyk M.A. Smith D. Yang J.C. Cross T.J. Jackson A.M. Hardie D.B. Anderson N.L. Borchers C.H. Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma.Mol. Cell. Proteomics. 2009; 8: 1860-1877Abstract Full Text Full Text PDF PubMed Scopus (444) Google Scholar, 46Shuford C.M. Sederoff R.R. Chiang V.L. Muddiman D.C. Peptide production and decay rates affect the quantitative accuracy of protein cleavage isotope dilution mass spectrometry (PC-IDMS).Mol. Cell. Proteomics. 2012; 11: 814-823Abstract Full Text Full Text PDF PubMed Scopus (61) Google Scholar). Good precision can only be obtained when these conditions are carried out reproducibly. Peptide concentrations are derived by measurement of the peak area ratios of one or more of the fragment ions from the labeled internal standard and the endogenous peptide. Stable isotope-labeled peptides provide this added measure of confidence as they (1) co-elute with the targeted analytes, (2) fragment to yield the corresponding, mass-shifted peptide backbone fragment ions, (3) have (in the absence of interference) identical relative abundances of the fragment ions as the endogenous peptide, and (4) compensate for ion suppression and poor spray stability (47Matuszewski B.K. Constanzer M.L. Chavez-Eng C.M. Matrix effect in quantitative LC/MS/MS analyses of biological fluids: a method for determination of finasteride in human plasma at picogram per milliliter concentrations.Anal. Chem. 1998; 70: 882-889Crossref PubMed Scopus (864) Google Scholar, 48King R. Bonfiglio R. Fernandez-Metzler C. Miller-Stein C. Olah T. Mechanistic investigation of ionization suppression in electrospray ionization.J. Am. Soc. Mass Spectrom. 2000; 11: 942-950Crossref PubMed Scopus (941) Google Scholar, 49Abbatiello S.E. Mani D.R. Keshishian H. Carr S.A. Automated Detection of inaccurate and imprecise transitions in quantitative assays of peptides by multiple monitoring mass spectrometry.Clin. Chem. 2010; 56: 291-305Crossref PubMed Scopus (166) Google Scholar, 50Reiter L. Rinner O. Picotti P. Hüttenhain R. Beck M. Brusniak M.Y. Hengartner M.O. Aebersold R. mProphet: automated data processing and statistical validation for large-scale SRM experiments.Nat. Methods. 2011; 8: 430-435Crossref PubMed Scopus (365) Google Scholar, 51Keshishian H. Addona T. Burgess M. Mani D.R. Shi X. Kuhn E. Sabatine M.S. Gerszten R.E. Carr S.A. Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution.Mol. Cell. Proteomics. 2009; 8: 2339-2349Abstract Full Text Full Text PDF PubMed Scopus (254) Google Scholar). Ion suppression is an insidious problem caused by other matrix components (lipids and other small molecules, peptides, salts, etc.) that co-elute and compete with the analyte of interest for ionization. Ion suppression results in a decrease in the ion current detected for the same amount of analyte analyzed from different samples. Ideally, the internal standard has the same structure as the analyte and co-e