KG
Kathryn Geiger‐Schuller
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
15
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
41

Multi-modal pooled Perturb-CITE-Seq screens in patient models define novel mechanisms of cancer immune evasion

Chris Frangieh et al.Sep 1, 2020
Abstract Resistance to immune checkpoint inhibitors (ICI) that activate T cell mediated anti-tumor immunity is a key challenge in cancer therapy, yet the underlying mechanisms remain poorly understood. To further elucidate those, we developed a new approach, Perturb-CITE-seq, for pooled CRISPR perturbation screens with multi-modal RNA and protein single-cell profiling readout and applied it to screen patient-derived autologous melanoma and tumor infiltrating lymphocyte (TIL) co-cultures. We profiled RNA and 20 surface proteins in over 218,000 cells under ~750 perturbations, chosen by their membership in an immune evasion program that is associated with immunotherapy resistance in patients. Our screen recovered clinically-relevant resistance mechanisms concordantly reflected in RNA, protein and perturbation effects on susceptibility to T cell mediated killing. These were organized in eight co-functional modules whose perturbation distinctly affect four co-regulated programs associated with immune evasion. Among these were defects in the IFNγ-JAK/STAT pathway and in antigen presentation, and several novel mechanisms, including loss or downregulation of CD58 , a surface protein without known mouse homolog. Leveraging the rich profiles in our screen, we found that loss of CD58 did not compromise MHC protein expression and that CD58 was not transcriptionally induced by the IFNγ pathway, allowing us to distinguish it as a novel mechanism of immune resistance. We further show that loss of CD58 on cancer cells conferred immune evasion across multiple T cell and Natural Killer cell patient co-culture models. Notably, CD58 is downregulated in tumors with resistance to immunotherapy in melanoma patients. Our work identifies novel mechanisms at the nexus of immune evasion and drug resistance and provides a general framework for deciphering complex mechanisms by large-scale perturbation screens with multi-modal singlecell profiles, including in systems consisting of multiple cell types.
41
Citation6
0
Save
0

CRISPR screens reveal neuropeptide signaling orchestrates T helper cell differentiation

Vijay Kuchroo et al.Aug 16, 2022
Abstract The balance between T helper type 1 (Th1) cells and other Th cells is critical for antiviral and anti-tumor responses, but how this fine balance is achieved remains poorly understood. Here, we dissected the dynamic regulation of Th1 cell differentiation during in vitro polarization, as well as in vivo differentiation upon acute viral infection, using scRNA-seq and multiple in vitro and in vivo CRISPR screens. We confirmed the role of known regulators and identified 5 novel regulators for Th1 differentiation. Among the novel regulators the neuropeptide receptor RAMP3, which is a component of the receptor for calcitonin gene-related peptide (CGRP), plays a cell-intrinsic role in Th1 cell-fate determination. Using a unique Th1/Th2 dichotomous culture system, we identified that RAMP3-CGRP interaction directly restricted the differentiation of Th2 cells but promoted Th1 differentiation through activation of downstream cyclic AMP (cAMP) signaling in T cells. Mechanistically, RAMP3 and cAMP signaling resulted in global changes in chromatin accessibility, blocking Th2 genes and specific induction of Th1 programs through activation of IFNγ-STAT1 pathway. Furthermore, both CGRP and RAMP3 were required for inducing effective anti-viral T cell responses to control acute viral infection. Our work reveals a novel neuro-immune circuit in which tissue itself participates in T cell fate determination by producing a neuropeptide during acute viral infection, which acts on RAMP3 expressing T cells to induce an effective anti-viral Th1 response.
0

Systematic perturbation screens decode regulators of inflammatory macrophage states and identify a role forTNFmRNA m6A modification

Simone Haag et al.Apr 14, 2024
ABSTRACT Macrophages adopt dynamic cell states with distinct effector functions to maintain tissue homeostasis and respond to environmental challenges. During chronic inflammation, macrophage polarization is subverted towards sustained inflammatory states which contribute to disease, but there is limited understanding of the regulatory mechanisms underlying these disease-associated states. Here, we describe a systematic functional genomics approach that combines genome-wide phenotypic screening in primary murine macrophages with transcriptional and cytokine profiling of genetic perturbations in primary human monocyte-derived macrophages (hMDMs) to uncover regulatory circuits of inflammatory macrophage states. This process identifies regulators of five distinct inflammatory states associated with key features of macrophage function. Among these, the mRNA m6A writer components emerge as novel inhibitors of a TNFα-driven cell state associated with multiple inflammatory pathologies. Loss of m6A writer components in hMDMs enhances TNF transcript stability, thereby elevating macrophage TNFα production. A PheWAS on SNPs predicted to impact m6A installation on TNF revealed an association with cystic kidney disease, implicating an m6A-mediated regulatory mechanism in human disease. Thus, systematic phenotypic characterization of primary human macrophages describes the regulatory circuits underlying distinct inflammatory states, revealing post-transcriptional control of TNF mRNA stability as an immunosuppressive mechanism in innate immunity.
0

Multiplexed single-cell profiling of post-perturbation transcriptional responses to define cancer vulnerabilities and therapeutic mechanism of action

James McFarland et al.Dec 8, 2019
Assays to study cancer cell responses to pharmacologic or genetic perturbations are typically restricted to using simple phenotypic readouts such as proliferation rate or the expression of a marker gene. Information-rich assays, such as gene-expression profiling, are generally not amenable to efficient profiling of a given perturbation across multiple cellular contexts. Here, we developed MIX-Seq, a method for multiplexed transcriptional profiling of post-perturbation responses across a mixture of samples with single-cell resolution, using SNP-based computational demultiplexing of single-cell RNA-sequencing data. We show that MIX-Seq can be used to profile responses to chemical or genetic perturbations across pools of 100 or more cancer cell lines, and combine it with Cell Hashing to further multiplex additional experimental conditions, such as multiple post-treatment time points or drug doses. Analyzing the high-content readout of scRNA-seq reveals both shared and context-specific transcriptional response components that can identify drug mechanism of action and can be used to predict long-term cell viability from short-term transcriptional responses to treatment.