JC
John Choi
Author with expertise in Neural Interface Technology
Seoul National University, Stanford Medicine, SUNY Downstate Medical Center
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
16
h-index:
18
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Motor Cortex Encodes A Temporal Difference Reinforcement Learning Process

Venkata Tarigoppula et al.May 7, 2020
+3
J
J
V
Abstract Temporal difference reinforcement learning (TDRL) accurately models associative learning observed in animals, where they learn to associate outcome predicting environmental states, termed conditioned stimuli (CS), with the value of outcomes, such as rewards, termed unconditioned stimuli (US). A component of TDRL is the value function, which captures the expected cumulative future reward from a given state. The value function can be modified by changes in the animal’s knowledge, such as by the predictability of its environment. Here we show that primary motor cortical (M1) neurodynamics reflect a TD learning process, encoding a state value function and reward prediction error in line with TDRL. M1 responds to the delivery of reward, and shifts its value related response earlier in a trial, becoming predictive of an expected reward, when reward is predictable due to a CS. This is observed in tasks performed manually or observed passively, as well as in tasks without an explicit CS predicting reward, but simply with a predictable temporal structure, that is a predictable environment. M1 also encodes the expected reward value associated with a set of CS in a multiple reward level CS-US task. Here we extend the Microstimulus TDRL model, reported to accurately capture RL related dopaminergic activity, to account for M1 reward related neural activity in a multitude of tasks. Significance statement There is a great deal of agreement between aspects of temporal difference reinforcement learning (TDRL) models and neural activity in dopaminergic brain centers. Dopamine is know to be necessary for sensorimotor learning induced synaptic plasticity in the motor cortex (M1), and thus one might expect to see the hallmarks of TDRL in M1, which we show here in the form of a state value function and reward prediction error during. We see these hallmarks even when a conditioned stimulus is not available, but the environment is predictable, during manual tasks with agency, as well as observational tasks without agency. This information has implications towards autonomously updating brain machine interfaces as others and we have proposed and published on.
1

Subdural CMOS optical probe (SCOPe) for bidirectional neural interfacing

Eric Pollmann et al.Oct 24, 2023
+13
I
H
E
Optical neurotechnologies use light to interface with neurons and can monitor and manipulate neural activity with high spatial-temporal precision over large cortical extents. While there has been significant progress in miniaturizing microscope for head-mounted configurations, these existing devices are still very bulky and could never be fully implanted. Any viable translation of these technologies to human use will require a much more noninvasive, fully implantable form factor. Here, we leverage advances in microelectronics and heterogeneous optoelectronic packaging to develop a transformative, ultrathin, miniaturized device for bidirectional optical stimulation and recording: the subdural CMOS Optical Probe (SCOPe). By being thin enough to lie entirely within the subdural space of the primate brain, SCOPe defines a path for the eventual human translation of a new generation of brain-machine interfaces based on light.
1
Citation6
0
Save
5

IL-12-expressing highly immunogenic recombinant modified vaccinia virus Ankara reprograms tumor-infiltrating myeloid cells to overcome immune resistance

Shuaitong Liu et al.Oct 24, 2023
+15
N
G
S
Abstract Novel strategies to reprogram tumor-infiltrating myeloid cells for cancer immunotherapy are urgently needed, given that the primary and acquired resistance to immune checkpoint blockade (ICB) therapy has hindered the overall success of immunotherapy. Modified vaccinia virus Ankara (MVA) is a highly attenuated, non-replicative vaccinia virus and an approved vaccine against smallpox and monkeypox. Here we report rational engineering of recombinant MVA, MQ833, by removing three immune suppressive genes, E5R, E3L, and WR199, from the MVA genome and inserting three transgenes encoding Flt3L, OX40L, and IL-12. Intratumoral (IT) delivery of MQ833 generates potent antitumor responses dependent on CD8 + T cells, neutrophils, and M1-like macrophages, the nucleic acid-sensing pathways mediated by MDA5/STING, and interferon feedback loop. IT MQ833 promotes the recruitment and activation of neutrophils and inflammatory monocytes into the injected tumors, depletion of M2-like macrophages, and expansion of M1-like macrophages, generating potent antitumor immunity against tumors resistant to ICB.
5
Citation1
0
Save
1

Intratumoral delivery of engineered recombinant modified vaccinia virus Ankara expressing Flt3L and OX40L generates potent antitumor immunity through activating the cGAS/STING pathway and depleting tumor-infiltrating regulatory T cells

Ning Yang et al.Oct 24, 2023
+13
S
Y
N
Summary Intratumoral (IT) delivery of immune-activating viruses can serve as an important strategy to turn “cold” tumors into “hot” tumors, resulting in overcoming resistance to immune checkpoint blockade (ICB). Modified vaccinia virus Ankara (MVA) is a highly attenuated, non-replicative vaccinia virus that has a long history of human use. Here we report that IT recombinant MVA (rMVA), lacking E5R encoding an inhibitor of the DNA sensor cyclic GMP-AMP synthase (cGAS), expressing a dendritic cell growth factor, Fms-like tyrosine kinase 3 ligand (Flt3L), and a T cell co-stimulator, OX40L, generates strong antitumor immunity, which is dependent on CD8 + T cells, the cGAS/STING-mediated cytosolic DNA-sensing pathway, and STAT1/STAT2-mediated type I IFN signaling. Remarkably, IT rMVA depletes OX40 hi regulatory T cells via OX40L/OX40 interaction and IFNAR signaling. Taken together, our study provides a proof-of-concept for improving MVA-based cancer immunotherapy, through modulation of both innate and adaptive immunity. One Sentence Summary Intratumoral delivery of recombinant MVA for cancer immunotherapy
1
Citation1
0
Save
3

Distinct Myeloid Derived Suppressor Cell Populations Promote Tumor Aggression in Glioblastoma

Christina Jackson et al.Oct 24, 2023
+17
S
C
C
Abstract The diversity of genetic programs and cellular plasticity of glioma-associated myeloid cells, and thus their contribution to tumor growth and immune evasion, is poorly understood. We performed single cell RNA-sequencing of immune and tumor cells from 33 glioma patients of varying tumor grades. We identified two populations characteristic of myeloid derived suppressor cells (MDSC), unique to glioblastoma (GBM) and absent in grades II and III tumors: i) an early progenitor population (E-MDSC) characterized by strong upregulation of multiple catabolic, anabolic, oxidative stress, and hypoxia pathways typically observed within tumor cells themselves, and ii) a monocytic MDSC (M-MDSC) population. The E-MDSCs geographically co-localize with a subset of highly metabolic glioma stem-like tumor cells with a mesenchymal program in the pseudopalisading region, a pathognomonic feature of GBMs associated with poor prognosis. Ligand-receptor interaction analysis revealed symbiotic cross-talk between the stemlike tumor cells and E-MDSCs in GBM, whereby glioma stem cells produce chemokines attracting E-MDSCs, which in turn produce growth and survival factors for the tumor cells. Our large-scale single-cell analysis elucidated unique MDSC populations as key facilitators of GBM progression and mediators of tumor immunosuppression, suggesting that targeting these specific myeloid compartments, including their metabolic programs, may be a promising therapeutic intervention in this deadly cancer. One-Sentence Summary Aggressive glioblastoma harbors two unique myeloid populations capable of promoting stem-like properties of tumor cells and suppressing T cell function in the tumor microenvironment.
20

Optimal Adaptive Electrode Selection to Maximize Simultaneously Recorded Neuron Yield

John Choi et al.Oct 24, 2023
+4
A
K
J
Abstract Neural-Matrix style, high-density electrode arrays for brain-machine interfaces (BMIs) and neuroscientific research require the use of multiplexing: Each recording channel can be routed to one of several electrode sites on the array. This capability allows the user to flexibly distribute recording channels to the locations where the most desirable neural signals can be resolved. For example, in the Neuropixel probe, 960 electrodes can be addressed by 384 recording channels. However, currently no adaptive methods exist to use recorded neural data to optimize/customize the electrode selections per recording context. Here, we present an algorithm called classification-based selection (CBS) that optimizes the joint electrode selections for all recording channels so as to maximize isolation quality of detected neurons. We show, in experiments using Neuropixels in non-human primates, that this algorithm yields a similar number of isolated neurons as would be obtained if all electrodes were recorded simultaneously. Neuron counts were 41-85% improved over previously published electrode selection strategies. The neurons isolated from electrodes selected by CBS were a 73% match, by spike timing, to the complete set of recordable neurons around the probe. The electrodes selected by CBS exhibited higher average per-recording-channel signal-to-noise ratio. CBS, and selection optimization in general, could play an important role in development of neurotechnologies for BMI, as signal bandwidth becomes an increasingly limiting factor. Code and experimental data have been made available 1 .