BZ
Biao Zhou
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
20
h-index:
18
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
43

SARS-CoV-2 hijacks neutralizing dimeric IgA for enhanced nasal infection and injury

Biao Zhou et al.Oct 6, 2021
+42
J
J
B
ABSTRACT Robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) accounts for high viral transmissibility, yet whether neutralizing IgA antibodies can control it remains unknown. Here, we evaluated receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1 and B8-dIgA2 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparably potent neutralization against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viruses in lungs, pre-exposure intranasal B8-dIgA1 or B8-dIgA2 led to 81-fold more infectious viruses and severer damage in NT than placebo. Virus-bound B8-dIgA1 and B8-dIgA2 could engage CD209 as an alternative receptor for entry into ACE2-negative cells and allowed viral cell-to-cell transmission. Cryo-EM revealed B8 as a class II neutralizing antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Therefore, RBD-specific neutralizing dIgA engages an unexpected action for enhanced SARS-CoV-2 nasal infection and injury in Syrian hamsters.
43
Citation7
0
Save
1

Inhibition mechanism and antiviral activity of an α-ketoamide based SARS-CoV-2 main protease inhibitor

Xiaoxin Chen et al.Mar 9, 2023
+29
P
Q
X
Abstract SARS-CoV-2 has demonstrated extraordinary ability to evade antibody immunity by antigenic drift. Small molecule drugs may provide effective therapy while being part of a solution to circumvent SARS-CoV-2 immune escape. In this study we report an α-ketoamide based peptidomimetic inhibitor of SARS-CoV-2 main protease (M pro ), RAY1216. Enzyme inhibition kinetic analysis established that RAY1216 is a slow-tight inhibitor with a K i of 8.6 nM; RAY1216 has a drug-target residence time of 104 min compared to 9 min of PF-07321332 (nirmatrelvir), the antiviral component in Paxlovid, suggesting that RAY1216 is approximately 12 times slower to dissociate from the protease-inhibitor complex compared to PF-07321332. Crystal structure of SARS-CoV-2 M pro :RAY1216 complex demonstrates that RAY1216 is covalently attached to the catalytic Cys145 through the α-ketoamide warhead; more extensive interactions are identified between bound RAY1216 and M pro active site compared to PF-07321332, consistent with a more stable acyl-enzyme inhibition complex for RAY1216. In cell culture and human ACE2 transgenic mouse models, RAY1216 demonstrates comparable antiviral activities towards different SARS-CoV-2 virus variants compared to PF-07321332. Improvement in pharmacokinetics has been observed for RAY1216 over PF-07321332 in various animal models, which may allow RAY1216 to be used without ritonavir. RAY1216 is currently undergoing phase III clinical trials ( https://clinicaltrials.gov/ct2/show/NCT05620160 ) to test real-world therapeutic efficacy against COVID-19.
1
Citation6
0
Save
1

An elite broadly neutralizing antibody protects SARS-CoV-2 Omicron variant challenge

Biao Zhou et al.Jan 5, 2022
+17
M
J
B
ABSTRACT The strikingly high transmissibility and antibody evasion of SARS-CoV-2 Omicron variant have posted great challenges on the efficacy of current vaccines and antibody immunotherapy.Here, we screened 34 BNT162b2-vaccinees and cloned a public broadly neutralizing antibody (bNAb) ZCB11 from an elite vaccinee. ZCB11 neutralized all authentic SARS-CoV-2 variants of concern (VOCs), including Omicron and OmicronR346K with potent IC50 concentrations of 36.8 and 11.7 ng/mL, respectively. Functional analysis demonstrated that ZCB11 targeted viral receptor-binding domain (RBD) and competed strongly with ZB8, a known RBD-specific class II NAb. Pseudovirus-based mapping of 57 naturally occurred single mutations or deletions revealed that only S371L resulted in 11-fold neutralization resistance, but this phenotype was not observed in the Omicron variant. Furthermore,prophylactic ZCB11 administration protected lung infection against both the circulating pandemic Delta and Omicron variants in golden Syrian hamsters. These results demonstrated that vaccine-induced ZCB11 is a promising bNAb for immunotherapy against pandemic SARS-CoV-2 VOCs.
1
Citation6
0
Save
30

Nasal prevention of SARS-CoV-2 infection by intranasal influenza-based boost vaccination

Runhong Zhou et al.Oct 22, 2021
+23
Y
P
R
Abstract Background Vaccines in emergency use are efficacious against COVID-19, yet vaccine-induced prevention against nasal SARS-CoV-2 infection remains suboptimal. Methods Since mucosal immunity is critical for nasal prevention, we investigated an intramuscular PD1-based receptor-binding domain (RBD) DNA vaccine (PD1-RBD-DNA) and intranasal live attenuated influenza-based vaccines (LAIV-CA4-RBD and LAIV-HK68-RBD) against SARS-CoV-2. Findings Substantially higher systemic and mucosal immune responses, including bronchoalveolar lavage IgA/IgG and lung polyfunctional memory CD8 T cells, were induced by the heterologous PD1-RBD-DNA/LAIV-HK68-RBD as compared with other regimens. When vaccinated animals were challenged at the memory phase, prevention of robust SARS-CoV-2 infection in nasal turbinate was achieved primarily by the heterologous regimen besides consistent protection in lungs. The regimen-induced antibodies cross-neutralized variants of concerns. Furthermore, LAIV-CA4-RBD could boost the BioNTech vaccine for improved mucosal immunity. Interpretation Our results demonstrated that intranasal influenza-based boost vaccination is required for inducing mucosal and systemic immunity for effective SARS-CoV-2 prevention in both upper and lower respiratory systems. Funding This study was supported by the Research Grants Council Collaborative Research Fund (C7156-20G, C1134-20G and C5110-20G), General Research Fund (17107019) and Health and Medical Research Fund (19181052 and 19181012) in Hong Kong; Outbreak Response to Novel Coronavirus (COVID-19) by the Coalition for Epidemic Preparedness Innovations; Shenzhen Science and Technology Program (JSGG20200225151410198); the Health@InnoHK, Innovation and Technology Commission of Hong Kong; and National Program on Key Research Project of China (2020YFC0860600, 2020YFA0707500 and 2020YFA0707504); and donations from the Friends of Hope Education Fund. Z.C.’s team was also partly supported by the Theme-Based Research Scheme (T11-706/18-N).
30
Citation1
0
Save
0

Identification of a peroxidase inhibitor that enhances kanamycin activity

Zhen Hui et al.Oct 13, 2020
+13
M
B
Z
Background The threat of antimicrobial resistance calls for more efforts in basic science, drug discovery, and clinical development, particularly gram-negative carbapenem-resistant pathogens. Objectives and methods Whole-cell–based screening was performed to identify novel antibacterial agents against Acinetobacter baumannii ATCC19606. Spontaneously resistant mutant selection, whole-genome sequencing, and surface plasmon resonance were used for target identification and confirmation. Checkerboard titration assay was used for drug combination analysis. Results A small molecule named 6D1 with the chemical structure of 6-fluorobenzo[d]isothiazol-3(2H)-one was identified and exhibited activity against A. baumannii ATCC19606 strain (minimal inhibitory concentration, MIC = 1 mg/L). The mutation in the plasmid-derived ohrB gene that encodes a peroxidase was identified in spontaneously resistant mutants. Treatment of the bacteria with 6D1 resulted in increased sensitivity to peroxide such as tert -butyl hydroperoxide. The binding of 6D1 and OhrB was confirmed by surface plasmon resonance. Interestingly, the MIC of kanamycin against spontaneously resistant mutants decreased. Finally, we identified the effect of 6D1 on enhancing the antibacterial activity of kanamycin, including New Delhi metallo-β-lactamase (NDM-1)-producing carbapenem-resistant Klebsiella pneumoniae , but not in strains carrying kanamycin resistance genes. Conclusions In this study, we identified a peroxidase inhibitor that suppresses the growth of A. baumannii and enhances the antibacterial activity of kanamycin. We propose that peroxidase may be potentially used as a target for kanamycin adjuvant development.