DK
Daniel Koller
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
7,525
h-index:
55
/
i10-index:
121
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4

Pamela Mahon et al.Sep 18, 2011
The Psychiatric GWAS Consortium Bipolar Disorder Working Group reports a large-scale genome-wide association study of 7,481 individuals with bipolar disorder with replication in 4,493 cases. The Consortium identifies a new susceptibility locus near ODZ4 and replicates a known association near CACNA1C for bipolar disorder. We conducted a combined genome-wide association study (GWAS) of 7,481 individuals with bipolar disorder (cases) and 9,250 controls as part of the Psychiatric GWAS Consortium. Our replication study tested 34 SNPs in 4,496 independent cases with bipolar disorder and 42,422 independent controls and found that 18 of 34 SNPs had P < 0.05, with 31 of 34 SNPs having signals with the same direction of effect (P = 3.8 × 10−7). An analysis of all 11,974 bipolar disorder cases and 51,792 controls confirmed genome-wide significant evidence of association for CACNA1C and identified a new intronic variant in ODZ4. We identified a pathway comprised of subunits of calcium channels enriched in bipolar disorder association intervals. Finally, a combined GWAS analysis of schizophrenia and bipolar disorder yielded strong association evidence for SNPs in CACNA1C and in the region of NEK4-ITIH1-ITIH3-ITIH4. Our replication results imply that increasing sample sizes in bipolar disorder will confirm many additional loci.
0
Citation1,348
0
Save
0

Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche

John Perry et al.Jul 23, 2014
Here 106 genomic loci associated with age at menarche, a marker of puberty timing in females, are identified; these loci show enrichment for genes involved in nuclear hormone receptor function, body mass index, and rare disorders of puberty, and for genes located in imprinted regions, with parent-of-origin specific effects at several loci. The age at which females first experience menstruation, called menarche, is a heritable trait associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and general mortality. This large-scale genome-wide association study identifies 123 signals at 106 genomic loci associated with age at menarche. New findings include parent-of-origin-specific allelic associations (both maternally and paternally driven) at three imprinted loci and the implication of retinoic acid and GABAB receptor II signalling and lysine-specific histone demethylation. These data bring new insights into the genetic architecture of puberty timing and suggest a model involving thousands of genetic variants. Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality1. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation2,3, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10−8) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition.
0
Citation585
0
Save
0

Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction

Mohammed Ayalew et al.May 15, 2012
We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein–coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology.
0
Citation386
0
Save
0

Genome-wide association study of bipolar disorder in European American and African American individuals

Erin Smith et al.Jun 2, 2009
To identify bipolar disorder (BD) genetic susceptibility factors, we conducted two genome-wide association (GWA) studies: one involving a sample of individuals of European ancestry (EA; n=1001 cases; n=1033 controls), and one involving a sample of individuals of African ancestry (AA; n=345 cases; n=670 controls). For the EA sample, single-nucleotide polymorphisms (SNPs) with the strongest statistical evidence for association included rs5907577 in an intergenic region at Xq27.1 (P=1.6 × 10−6) and rs10193871 in NAP5 at 2q21.2 (P=9.8 × 10−6). For the AA sample, SNPs with the strongest statistical evidence for association included rs2111504 in DPY19L3 at 19q13.11 (P=1.5 × 10−6) and rs2769605 in NTRK2 at 9q21.33 (P=4.5 × 10−5). We also investigated whether we could provide support for three regions previously associated with BD, and we showed that the ANK3 region replicates in our sample, along with some support for C15Orf53; other evidence implicates BD candidate genes such as SLITRK2. We also tested the hypothesis that BD susceptibility variants exhibit genetic background-dependent effects. SNPs with the strongest statistical evidence for genetic background effects included rs11208285 in ROR1 at 1p31.3 (P=1.4 × 10−6), rs4657247 in RGS5 at 1q23.3 (P=4.1 × 10−6), and rs7078071 in BTBD16 at 10q26.13 (P=4.5 × 10−6). This study is the first to conduct GWA of BD in individuals of AA and suggests that genetic variations that contribute to BD may vary as a function of ancestry.
0
Citation358
0
Save
0

Pitfalls in performing genome-wide association studies on ratio traits

Zachary McCaw et al.Nov 1, 2023
Abstract Genome-wide association studies (GWAS) are often performed on ratios composed of a numerator trait divided by a denominator trait. Examples include body mass index (BMI) and the waist-to-hip ratio, among many others. Explicitly or implicitly, the goal of forming the ratio is typically to adjust the numerator for the denominator. While forming ratios may be clinically expedient, there are several important issues with performing GWAS on ratios. Forming a ratio does not “adjust” for the denominator in the sense of holding it constant, and it is unclear whether associations with ratios are attributable to the numerator, the denominator, or both. Here we demonstrate that associations arising in ratio GWAS can be entirely denominator-driven, implying that at least some associations uncovered by ratio GWAS may be due solely to a putative adjustment variable. In a survey of 10 exemplar ratios, we find that the ratio model disagrees with the adjusted model (performing GWAS on the numerator while conditioning on the denominator) at around 1/3 of loci. Using BMI as an example, we show that variants detected by only the ratio model are more strongly associated with the denominator (height), while variants detected by only the adjusted model are more strongly associated with the numerator (weight). Although the adjusted model provides effect sizes with a clearer interpretation, it is susceptible to collider bias. We propose and validate a simple method of correcting for the genetic collider bias via leave-one-chromosome-out polygenic scoring.
0
Citation1
0
Save
0

Deep Learning Analysis on Images of iPSC-derived Motor Neurons Carrying fALS-genetics Reveals Disease-Relevant Phenotypes

Rahul Atmaramani et al.Jan 5, 2024
Summary Amyotrophic lateral sclerosis (ALS) is a devastating condition with very limited treatment options. It is a heterogeneous disease with complex genetics and unclear etiology, making the discovery of disease-modifying interventions very challenging. To discover novel mechanisms underlying ALS, we leverage a unique platform that combines isogenic, induced pluripotent stem cell (iPSC)-derived models of disease-causing mutations with rich phenotyping via high-content imaging and deep learning models. We introduced eight mutations that cause familial ALS (fALS) into multiple donor iPSC lines, and differentiated them into motor neurons to create multiple isogenic pairs of healthy (wild-type) and sick (mutant) motor neurons. We collected extensive high-content imaging data and used machine learning (ML) to process the images, segment the cells, and learn phenotypes. Self-supervised ML was used to create a concise embedding that captured significant, ALS-relevant biological information in these images. We demonstrate that ML models trained on core cell morphology alone can accurately predict TDP-43 mislocalization, a known phenotypic feature related to ALS. In addition, we were able to impute RNA expression from these image embeddings, in a way that elucidates molecular differences between mutants and wild-type cells. Finally, predictors leveraging these embeddings are able to distinguish between mutant and wild-type both within and across donors, defining cellular, ML-derived disease models for diverse fALS mutations. These disease models are the foundation for a novel screening approach to discover disease-modifying targets for familial ALS.
0

Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder

Liping Hou et al.Mar 22, 2016
Bipolar disorder (BD) is a genetically complex mental illness characterized by severe oscillations of mood and behavior. Genome-wide association studies (GWAS) have identified several risk loci that together account for a small portion of the heritability. To identify additional risk loci, we performed a two-stage meta-analysis of >9 million genetic variants in 9,784 bipolar disorder patients and 30,471 controls, the largest GWAS of BD to date. In this study, to increase power we used ~2,000 lithium-treated cases with a long-term diagnosis of BD from the Consortium on Lithium Genetics, excess controls, and analytic methods optimized for markers on the X-chromosome. In addition to four known loci, results revealed genome-wide significant associations at two novel loci: an intergenic region on 9p21.3 (rs12553324, p = 5.87×10-9; odds ratio = 1.12) and markers within ERBB2 (rs2517959, p = 4.53×10-9; odds ratio = 1.13). No significant X-chromosome associations were detected and X-linked markers explained very little BD heritability. The results add to a growing list of common autosomal variants involved in BD and illustrate the power of comparing well-characterized cases to an excess of controls in GWAS.
1

A Pooled Cell Painting CRISPR Screening Platform Enables de novo Inference of Gene Function by Self-supervised Deep Learning

Srinivasan Sivanandan et al.Aug 15, 2023
Abstract Pooled CRISPR screening has emerged as a powerful method of mapping gene functions thanks to its scalability, affordability, and robustness against well or plate-specific confounders present in array-based screening 1–6 . Most pooled CRISPR screens assay for low dimensional phenotypes (e.g. fitness, fluorescent markers). Higher-dimensional assays such as perturb-seq are available but costly and only applicable to transcriptomics readouts 7–11 . Recently, pooled optical screening, which combines pooled CRISPR screening and microscopy-based assays, has been demonstrated in the studies of the NFkB pathway, essential human genes, cytoskeletal organization and antiviral response 12–15 . While the pooled optical screening methodology is scalable and information-rich, the applications thus far employ hypothesis-specific assays. Here, we enable hypothesis-free reverse genetic screening for generic morphological phenotypes by re-engineering the Cell Painting 16 technique to provide compatibility with pooled optical screening. We validated this technique using well-defined morphological genesets (124 genes), compared classical image analysis and self-supervised learning methods using a mechanism-of-action (MoA) library (300 genes), and performed discovery screening with a druggable genome library (1640 genes) 17 . Across these three experiments we show that the combination of rich morphological data and deep learning allows gene networks to emerge without the need for target-specific biomarkers, leading to better discovery of gene functions.