SW
Sharon Wolf
Author with expertise in Ecology and Evolution of Viruses in Ecosystems
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
7
h-index:
40
/
i10-index:
76
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The formation of microbial exoskeletons is driven by a controlled calcium-concentrating subcellular niche

Alona Keren‐Paz et al.Jan 9, 2020
+19
S
T
A
Abstract In nature, bacteria reside in biofilms - multicellular differentiated communities held together by extracellular matrix. In this work, we identified a novel subpopulation essential for biofilm formation – mineral-forming cells. This subpopulation contains an intracellular calcium-accumulating niche, in which the formation of a calcium carbonate mineral is initiated. As the biofilm colony develops, this mineral grows in a controlled manner, forming a functional macrostructure that serves the entire community. The molecular mechanisms promoting calcite scaffold formation were conserved between three distant phyla – the Gram-positive Bacillus subtilis , Gram-negative Pseudomonas aeruginosa and the actinobacterium Mycobacterium abscessus . Biofilm development of all three species was similarly impaired by inhibition of calcium uptake and carbonate accumulation. Moreover, chemical inhibition and mutations targeting mineralization both significantly reduced the attachment of P. aeruginosa to the lung, as well as the subsequent damage inflicted by biofilms to lung tissues, and restored their sensitivity to antibiotics. The evolutionary conserved cellular pathway controlling the fundamental feature of biofilm development uncovered in this work offers novel druggable targets for antibiotics to combat otherwise untreatable biofilm infections.
0
Citation4
0
Save
1

Rim aperture of autophagic membranes balances cargo inclusion with vesicle maturation

Oren Shatz et al.Jun 1, 2023
+4
A
M
O
Summary Autophagy eliminates cytoplasmic material by engulfment in membranous vesicles targeted for lysosome degradation. Nonselective autophagy coordinates the sequestration of bulk cargo with the growth of the isolation membrane (IM) in a yet-unknown manner. Here we show the yeast IM expands while maintaining a rim sufficiently wide for sequestration of large cargo but tight enough to mature in due time. An obligate complex of Atg24/Snx4 with Atg20 or Snx41 assembles locally at the rim in a spatially-extended manner that specifically depends on autophagic PI(3)P. This assembly stabilizes the open rim to promote autophagic sequestration of large cargo in correlation with vesicle inflation. Moreover, constriction of the rim by the PI(3)P-dependent Atg2-Atg18 complex and clearance of PI(3)P by Ymr1 antagonize the rim opening to promote autophagic maturation and consumption of small cargo. Tight regulation of membrane rim aperture by PI(3)P thus couples the mechanism and physiology of nonselective autophagy.
1
Citation1
0
Save
0

The molecular mechanism of on-demand sterol biosynthesis at organelle contact sites

Naama Zung et al.May 10, 2024
+21
S
N
N
Contact-sites are specialized zones of proximity between two organelles, essential for organelle communication and coordination. The formation of contacts between the Endoplasmic Reticulum (ER), and other organelles, relies on a unique membrane environment enriched in sterols. However, how these sterol-rich domains are formed and maintained had not been understood. We found that the yeast membrane protein Yet3, the homolog of human BAP31, is localized to multiple ER contact sites. We show that Yet3 interacts with all the enzymes of the post-squalene ergosterol biosynthesis pathway and recruits them to create sterol-rich domains. Increasing sterol levels at ER contacts causes its depletion from the plasma membrane leading to a compensatory reaction and altered cell metabolism. Our data shows that Yet3 provides on-demand sterols at contacts thus shaping organellar structure and function. A molecular understanding of this protein's functions gives new insights into the role of BAP31 in development and pathology.
0
Citation1
0
Save
12

Bridging the light-electron resolution gap with correlative cryo-SRRF and dual-axis cryo-STEM tomography

Peter Kirchweger et al.Nov 19, 2022
+2
D
S
P
Abstract Cryo-electron tomography (cryo-ET) is the prime method for cell biological studies in three dimensions (3D) at high resolution. We have introduced cryo-scanning transmission electron tomography (CSTET), which can access larger 3D volumes, on the scale of 1 micron, making it ideal to study organelles and their interactions in situ . Here we introduce two relevant advances: a) we demonstrate the utility of multi-color super-resolution radial fluctuation light microscopy under cryogenic conditions (cryo-SRRF), and b) we extend the use of deconvolution processing for dual-axis CSTET data. We show that cryo-SRRF nanoscopy is able to reach resolutions in the range of 100 nm, using commonly available fluorophores and a conventional widefield microscope for cryo-correlative light-electron microscopy (cryo-CLEM). Such resolution aids in precisely identifying regions of interest before tomographic acquisition and enhances precision in localizing features of interest within the 3D reconstruction. Dual-axis CSTET tilt series data and application of entropy regularized deconvolution during post-processing results in close-to isotropic resolution in the reconstruction without averaging. We show individual protein densities in a mitochondrion-ER contact in a cell region 850 nm thick. The integration of cryo-SRRF with deconvolved dual-axis CSTET provides a versatile workflow for studying unique objects in a cell.
1

Bacteria conjugate ubiquitin-like proteins to interfere with phage assembly

Jens Hör et al.Sep 4, 2023
R
S
J
Abstract Multiple immune pathways in humans conjugate ubiquitin-like proteins to virus and host molecules as a means of antiviral defense. Here we studied an anti-phage defense system in bacteria, comprising a ubiquitin-like protein, ubiquitin-conjugating enzymes E1 and E2, and a deubiquitinase. We show that during phage infection, this system specifically conjugates the ubiquitin-like protein to the phage central tail fiber, a protein at the tip of the tail that is essential for tail assembly as well as for recognition of the target host receptor. Following infection, cells encoding this defense system release a mixture of partially assembled, tailless phage particles, and fully assembled phages in which the central tail fiber is obstructed by the covalently attached ubiquitin-like protein. These phages exhibit severely impaired infectivity, explaining how the defense system protects the bacterial population from the spread of phage infection. Our findings demonstrate that conjugation of ubiquitin-like proteins is an antiviral strategy conserved across the tree of life.
7

3D Deconvolution Processing for STEM Cryo-Tomography

Barnali Waugh et al.Aug 27, 2020
+4
D
S
B
Abstract The complex environment of biological cells and tissues has motivated development of three dimensional imaging in both light and electron microscopies. To this end, one of the primary tools in fluorescence microscopy is that of computational deconvolution. Wide-field fluorescence images are often corrupted by haze due to out-of-focus light, i.e., to cross-talk between different object planes as represented in the 3D image. Using prior understanding of the image formation mechanism, it is possible to suppress the cross-talk and reassign the unfocused light to its proper source post facto . Electron tomography based on tilted projections also exhibits a cross-talk between distant planes due to the discrete angular sampling and limited tilt range. By use of a suitably synthesized 3D point spread function, we show here that deconvolution leads to similar improvements in volume data reconstructed from cryo-scanning transmission electron tomography (CSTET), namely a dramatic in-plane noise reduction and improved representation of features in the axial dimension. Contrast enhancement is demonstrated first with colloidal gold particles, and then in representative cryo-tomograms of intact cells. Deconvolution of CSTET data collected from the periphery of an intact nucleus revealed partially condensed, extended structures in interphase chromatin. Significance statement Electron tomography is used to reveal the structure of cells in three dimensions. The combination with cryogenic fixation provides a snapshot in time of the living state. However, cryo-tomography normally requires very thin specimens due to image formation by conventional phase contrast transmission electron microscopy (TEM). The thickness constraint can be relaxed considerably by scanning TEM (STEM), yet three-dimensional (3D) reconstruction is still subject to artifacts inherent in the collection of data by tilted projections. We show here that deconvolution algorithms developed for fluorescence microscopy can suppress these artifacts, resulting in significant contrast enhancement. The method is demonstrated by cellular tomography of complex membrane structures, and by segmentation of chromatin into distinct, contiguous domains of heterochromatin and euchromatin at high and low density, respectively.
19

Hsp40s display class-specific binding profiles, serving complementary roles in the prevention of tau amyloid formation

Rose Irwin et al.Apr 11, 2021
+3
S
O
R
ABSTRACT The microtubule-associated protein, tau, is the major subunit of neurofibrillary tangles, forming insoluble, amyloid-type aggregates associated with neurodegenerative conditions, such as Alzheimer’s disease. Tau aggregation, however, can be prevented in the cell by a class of proteins known as molecular chaperones, which play important roles in maintaining protein homeostasis. While numerous chaperones are known to interact with tau, though, little is known about the detailed mechanisms by which these prevent tau aggregation. Here, we describe the effects of the ATP-independent Hsp40 chaperones, DNAJA2 and DNAJB1, on tau amyloid fiber formation and compare these to the well-studied small heat shock protein HSPB1. We find that each chaperone prevents tau aggregation differently, by interacting with distinct sets of tau species along the aggregation pathway and thereby affecting their incorporation into fibers. Whereas HSPB1 only binds tau monomers, DNAJB1 and DNAJA2 recognize aggregation-prone tau conformers and even mature fibers, thus efficiently preventing formation of tau amyloids. In addition, we find that both Hsp40s bind tau seeds and fibers via their C-terminal domain II (CTDII), with DNAJA2 being further capable of recognizing tau monomers by a second, different site in CTDI. These results provide important insight into the molecular mechanism by which the different members of the Hsp40 chaperone family counteract the formation, propagation, and toxicity of tau aggregates. Furthermore, our findings highlight the fact that chaperones from different families and different classes play distinct, but complementary roles in preventing pathological protein aggregation.