AA
Arturo Alvarez‐Buylla
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
9
h-index:
21
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Molecular diversity and lineage commitment of human interneuron progenitors

Dmitry Velmeshev et al.May 14, 2021
Abstract Cortical interneurons are indispensable for proper function of neocortical circuits. Changes in interneuron development and function are implicated in human disorders, such as autism spectrum disorder and epilepsy. In order to understand human-specific features of cortical development as well as the origins of neurodevelopmental disorders it is crucial to identify the molecular programs underlying human interneuron development and subtype specification. Recent studies have explored gene expression programs underlying mouse interneuron specification and maturation. We applied single-cell RNA sequencing to samples of second trimester human ganglionic eminence and developing cortex to identify molecularly defined subtypes of human interneuron progenitors and immature interneurons. In addition, we integrated this data from the developing human ganglionic eminences and neocortex with single-nucleus RNA-seq of adult cortical interneurons in order to elucidate dynamic molecular changes associated with commitment of progenitors and immature interneurons to mature interneuron subtypes. By comparing our data with published mouse single-cell genomic data, we discover a number of divergent gene expression programs that distinguish human interneuron progenitors from mouse. Moreover, we find that a number of transcription factors expressed during prenatal development become restricted to adult interneuron subtypes in the human but not the mouse, and these adult interneurons express species- and lineage-specific cell adhesion and synaptic genes. Therefore, our study highlights that despite the similarity of main principles of cortical interneuron development and lineage commitment between mouse and human, human interneuron genesis and subtype specification is guided by species-specific gene programs, contributing to human-specific features of cortical inhibitory interneurons.
1
Citation6
0
Save
69

A cross-species proteomic map reveals neoteny of human synapse development

Li Wang et al.Oct 25, 2022
Abstract The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood. Here, we generated a cross-species proteomic map of synapse development in the human, macaque, and mouse neocortex. By tracking the changes of >1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we found that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that the human PSD matures about two to three times slower than other species and contains higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of the RhoGEF signaling in human neurons delays the morphological maturation of dendritic spines and the functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Together, our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.
69
Citation2
0
Save
0

Molecular and cellular dynamics of the developing human neocortex at single-cell resolution

Li Wang et al.Jan 16, 2024
Summary The development of the human neocortex is a highly dynamic process and involves complex cellular trajectories controlled by cell-type-specific gene regulation 1 . Here, we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence. In parallel, we performed spatial transcriptomic analysis on a subset of the samples to illustrate spatial organization and intercellular communication. This atlas enables us to catalog cell type-, age-, and area-specific gene regulatory networks underlying neural differentiation. Moreover, combining single-cell profiling, progenitor purification, and lineage-tracing experiments, we have untangled the complex lineage relationships among progenitor subtypes during the transition from neurogenesis to gliogenesis in the human neocortex. Specifically, we find a tripotential intermediate progenitor subtype termed Tri-IPC responsible for the local production of GABAergic neurons. Furthermore, by integrating our atlas data with large-scale GWAS data, we created a disease-risk map highlighting enriched ASD risk in second-trimester intratelencephalic projection neurons. Our study sheds light on the gene regulatory landscape and cellular dynamics of the developing human neocortex.
1

Prdm16 and Vcam1 regulate the postnatal disappearance of embryonic radial glia and the ending of cortical neurogenesis

Jiwen Li et al.Feb 16, 2023
Abstract Embryonic neural stem cells (NSCs, i.e ., radial glia) in the ventricular-subventricular zone (V-SVZ) generate the majority of neurons and glia in the forebrain. Postnatally, embryonic radial glia disappear and a subpopulation of radial glia transition into adult NSCs. As this transition occurs, widespread neurogenesis in brain regions such as the cerebral cortex ends. The mechanisms that regulate the postnatal disappearance of radial glia and the ending of embryonic neurogenesis remain poorly understood. Here, we show that PR domain-containing 16 (Prdm16) promotes the disappearance of radial glia and the ending of neurogenesis in the cerebral cortex. Genetic deletion of Prdm16 from NSCs leads to the persistence of radial glia in the adult V-SVZ and prolonged postnatal cortical neurogenesis. Mechanistically, Prdm16 induces the postnatal reduction in Vascular Cell Adhesion Molecule 1 (Vcam1). The postnatal disappearance of radial glia and the ending of cortical neurogenesis occur normally in Prdm16-Vcam1 double conditional knockout mice. These observations reveal novel molecular regulators of the postnatal disappearance of radial glia and the ending of embryonic neurogenesis, filling a key knowledge gap in NSC biology.
0

Clustered γ-Protocadherins Regulate Cortical Interneuron Programmed Cell Death

Walter Leon et al.Jan 15, 2020
Cortical function critically depends on inhibitory/excitatory balance. GABAergic cortical inhibitory interneurons (cINs) are born in the ventral forebrain. After completing their migration into cortex, their final numbers are adjusted-during a period of postnatal development - by programmed cell death (PCD). The mechanisms that regulate cIN elimination remain controversial. Here we show that genes in the protocadherin (Pcdh)-γ gene cluster, but not in the Pcdh-α or Pcdh-β clusters, are required for survival of cINs through a BAX-dependent mechanism. Surprisingly, the physiological and morphological properties of Pcdh-γ deficient and wild type cINs during PCD were indistinguishable. Co-transplantation of wild type and Pcdh-γ deficient interneuron precursor cells demonstrate that: 1) the number of mutant cINs eliminated was much higher than that of wild type cells, but the proportion of mutant or WT cells undergoing cell death was not affected by their density; 2) the presence of mutant cINs increases cell death among wild-type counterparts, and 3) cIN survival is dependent on the expression of Pcdh-γ C3, C4, and C5. We conclude that Pcdh-γ, and specifically γC3, γC4, and γC5, play a critical role in regulating cIN survival during the endogenous period of PCD.Significance GABAergic cortical inhibitory interneurons (cINs) in the cerebral cortex originate from the ventral embryonic forebrain. After a long migration, they come together with local excitatory neurons to form cortical circuits. These circuits are responsible for higher brain functions, and the improper balance of excitation/inhibition in the cortex can result in mental diseases. Therefore, an understanding of how the final number of cINs is determined is both biologically and, likely, therapeutically significant. Here we show that cell surface homophilic binding proteins belonging to the clustered protocadherin gene family, specifically three isoforms in the Pcdh-γ cluster, play a key role in the regulation cIN programmed cell death. Co-transplantation of mutant and wild-type cINs shows that Pcdh-γ genes have cell-autonomous and non-cell autonomous roles in the regulation of cIN cell death. This work will help identify the molecular mechanisms and cell-cell interactions that determine how the proper ratio of excitatory to inhibitory neurons is determined in the cerebral cortex.