JZ
Jian Zeng
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
21
(57% Open Access)
Cited by:
3,134
h-index:
23
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mapping genomic loci implicates genes and synaptic biology in schizophrenia

Vassily Trubetskoy et al.Apr 8, 2022
Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies. A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.
0
Citation1,385
0
Save
0

Signatures of negative selection in the genetic architecture of human complex traits

Jian Zeng et al.Apr 13, 2018
We develop a Bayesian mixed linear model that simultaneously estimates single-nucleotide polymorphism (SNP)-based heritability, polygenicity (proportion of SNPs with nonzero effects), and the relationship between SNP effect size and minor allele frequency for complex traits in conventionally unrelated individuals using genome-wide SNP data. We apply the method to 28 complex traits in the UK Biobank data (N = 126,752) and show that on average, 6% of SNPs have nonzero effects, which in total explain 22% of phenotypic variance. We detect significant (P < 0.05/28) signatures of natural selection in the genetic architecture of 23 traits, including reproductive, cardiovascular, and anthropometric traits, as well as educational attainment. The significant estimates of the relationship between effect size and minor allele frequency in complex traits are consistent with a model of negative (or purifying) selection, as confirmed by forward simulation. We conclude that negative selection acts pervasively on the genetic variants associated with human complex traits. BayesS estimates SNP-based heritability, polygenicity, and the relationship between effect size and minor allele frequency using genome-wide SNP data. Applying BayesS to UK Biobank data identifies signatures of natural selection for 23 complex traits.
0
Citation354
0
Save
0

Improved polygenic prediction by Bayesian multiple regression on summary statistics

Luke Lloyd‐Jones et al.Jan 17, 2019
ABSTRACT The capacity to accurately predict an individual’s phenotype from their DNA sequence is one of the great promises of genomics and precision medicine. Recently, Bayesian methods for generating polygenic predictors have been successfully applied in human genomics but require the individual level data, which are often limited in their access due to privacy or logistical concerns, and are computationally very intensive. This has motivated methodological frameworks that utilise publicly available genome-wide association studies (GWAS) summary data, which now for some traits include results from greater than a million individuals. In this study, we extend the established summary statistics methodological framework to include a class of point-normal mixture prior Bayesian regression models, which have been shown to generate optimal genetic predictions and can perform heritability estimation, variant mapping and estimate the distribution of the genetic effects. In a wide range of simulations and cross-validation using 10 real quantitative traits and 1.1 million variants on 350,000 individuals from the UK Biobank (UKB), we establish that our summary based method, SBayesR, performs similarly to methods that use the individual level data and outperforms other state-of-the-art summary statistics methods in terms of prediction accuracy and heritability estimation at a fraction of the computational resources. We generate polygenic predictors for body mass index and height in two independent data sets and show that by exploiting summary statistics on 1.1 million variants from the largest GWAS meta-analysis ( n ≈ 700, 000) that the SBayesR prediction R 2 improved on average across traits by 6.8% relative to that estimated from an individual-level data BayesR analysis of data from the UKB ( n ≈ 450, 000). Compared with commonly used state-of-the-art summary-based methods, SBayesR improved the prediction R 2 by 4.1% relative to LDpred and by 28.7% relative to clumping and p -value thresholding. SBayesR gave comparable prediction accuracy to the recent RSS method, which has a similar model, but at a computational time that is two orders of magnitude smaller. The methodology is implemented in a very efficient and user-friendly software tool titled GCTB.
0
Citation20
0
Save
41

Leveraging functional genomic annotations and genome coverage to improve polygenic prediction of complex traits within and between ancestries

Zhili Zheng et al.Oct 14, 2022
Abstract We develop a new method, SBayesRC, that integrates GWAS summary statistics with functional genomic annotations to improve polygenic prediction of complex traits. Our method is scalable to whole-genome variant analysis and refines signals from functional annotations by allowing them to affect both causal variant probability and causal effect distribution. We analyse 28 traits in the UK Biobank using ∼7 million common SNPs and 96 annotations. SBayesRC improves prediction accuracy by 14% in European ancestry and by up to 33% in trans-ancestry prediction, compared to the baseline method SBayesR which does not use annotations, and outperforms state-of-the-art methods LDpred-funct, PolyPred-S and PRS-CSx by 12-15%. Investigation of factors affecting prediction accuracy identified a significant interaction between SNP density and annotation information, encouraging future use of whole-genome sequence variants for prediction. Functional partitioning analysis highlights a major contribution of evolutionary constrained regions to prediction accuracy and the largest per-SNP contribution from non-synonymous SNPs.
41
Citation19
0
Save
6

Extend Mixed Models to Multi-layer Neural Networks for Genomic Prediction Including Intermediate Omics Data

Tianjing Zhao et al.Dec 11, 2021
ABSTRACT With the growing amount and diversity of intermediate omics data complementary to genomics (e.g., DNA methylation, gene expression, and protein abundance), there is a need to develop methods to incorporate intermediate omics data into conventional genomic evaluation. The omics data helps decode the multiple layers of regulation from genotypes to phenotypes, thus forms a connected multi-layer network naturally. We developed a new method named NN-LMM to model the multiple layers of regulation from genotypes to intermediate omics features, then to phenotypes, by extending conventional linear mixed models (“LMM”) to multi-layer artificial neural networks (“NN”). NN-LMM incorporates intermediate omics features by adding middle layers between genotypes and phenotypes. Linear mixed models (e.g., pedigree-based BLUP, GBLUP, Bayesian Alphabet, single-step GBLUP, or single-step Bayesian Alphabet) can be used to sample marker effects or genetic values on intermediate omics features, and activation functions in neural networks are used to capture the nonlinear relationships between intermediate omics features and phenotypes. NN-LMM had significantly better prediction performance than the recently proposed single-step approach for genomic prediction with intermediate omics data. Compared to the single-step approach, NN-LMM can handle various patterns of missing omics measures, and allows nonlinear relationships between intermediate omics features and phenotypes. NN-LMM has been implemented in an open-source package called “JWAS”.
6
Citation4
0
Save
28

mBAT-combo: a more powerful test to detect gene-trait associations from GWAS data

Ang Li et al.Jun 29, 2022
Abstract Gene-based association tests aggregate multiple SNP-trait associations into sets defined by gene boundaries. Since genes have a direct biological link to downstream function, gene-based test results are widely used in post-GWAS analysis. A common approach for gene-based tests is to combine SNPs associations by computing the sum of χ 2 statistics. However, this strategy ignores the directions of SNP effects, which could result in a loss of power for SNPs with masking effects (e.g., when the product of the effects of two SNPs and their linkage disequilibrium (LD) correlation is negative). Here, we introduce “mBAT-combo”, a new set-based test that is better powered than other methods to detect multi-SNP associations in the context of masking effects. We validate the method through simulations and applications to real data. We find that of 35 blood and urine biomarker traits in the UK Biobank, 34 traits show evidence for masking effects in a total of 4,175 gene-trait pairs, indicating that masking effects in complex traits is common. We further validate the improved power of our method in height, body mass index and schizophrenia with different GWAS sample sizes and show that on average 95.7% of the genes detected only by mBAT-combo with smaller sample sizes can be identified by the single-SNP approach with larger sample sizes (average sample size increased by 1.7-fold). For instance, LRRC4B is significant only in our method for schizophrenia, which has been shown to play a role in presynaptic pathology using genetic fine-mapping and evidence-based synaptic annotations. As a more powerful gene-based method, mBAT-combo is expected to improve the downstream pathway analysis or tissue and cell-type enrichment analysis that takes genes identified from GWAS data as input to understand the biological mechanisms of the trait or disease. Despite our focus on genes in this study, the framework of mBAT-combo is general and can be applied to any set of SNPs to refine trait-association signals hidden in genomic regions with complex LD structures.
28
Citation4
0
Save
Load More