CX
Chuanyun Xu
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
22
h-index:
14
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
108

Motion of single molecular tethers reveals dynamic subdomains at ER-mitochondria contact sites

Christopher Obara et al.Sep 3, 2022
To coordinate cellular physiology, eukaryotic cells rely on the inter-organelle transfer of molecules at specialized organelle-organelle contact sites 1,2 . Endoplasmic reticulum-mitochondria contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signaling molecules, lipids, and metabolites 3 . ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle 4,5 . However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation 6,7 , a clear understanding of their nanoscale structure and regulation is still lacking. Here, we combine 3D electron microscopy with high-speed molecular tracking of a model organelle tether, VAPB, to map the structure and diffusion landscape of ERMCSs. From EM reconstructions, we identified subdomains within the contact site where ER membranes dramatically deform to match local mitochondrial curvature. In parallel live cell experiments, we observed that the VAPB tethers that mediate this interface were not immobile, but rather highly dynamic, entering and leaving the site in seconds. These subdomains enlarged during nutrient stress, indicating ERMCSs can readily remodel under different physiological conditions. An ALS-associated mutation in VAPB altered the normal fluidity of contact sites, likely perturbing effective communication across the contact site and preventing remodeling. These results establish high speed single molecule imaging as a new tool for mapping the structure of contact site interfaces and suggest that the diffusion landscape of VAPB is a crucial component of ERMCS homeostasis.
108
Citation10
0
Save
109

Three-dimensional reconstructions of mechanosensory end organs suggest a unifying mechanism underlying dynamic, light touch

Annie Handler et al.Mar 18, 2023
Specialized mechanosensory end organs within mammalian skin-hair follicle-associated lanceolate complexes, Meissner corpuscles, and Pacinian corpuscles-enable our perception of light, dynamic touch 1 . In each of these end organs, fast-conducting mechanically sensitive neurons, called Aβ low-threshold mechanoreceptors (Aβ LTMRs), associate with resident glial cells, known as terminal Schwann cells (TSCs) or lamellar cells, to form complex axon ending structures. Lanceolate-forming and corpuscle-innervating Aβ LTMRs share a low threshold for mechanical activation, a rapidly adapting (RA) response to force indentation, and high sensitivity to dynamic stimuli 1-6 . How mechanical stimuli lead to activation of the requisite mechanotransduction channel Piezo2 7-15 and Aβ RA-LTMR excitation across the morphologically dissimilar mechanosensory end organ structures is not understood. Here, we report the precise subcellular distribution of Piezo2 and high-resolution, isotropic 3D reconstructions of all three end organs formed by Aβ RA-LTMRs determined by large volume enhanced Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) imaging. We found that within each end organ, Piezo2 is enriched along the sensory axon membrane and is minimally or not expressed in TSCs and lamellar cells. We also observed a large number of small cytoplasmic protrusions enriched along the Aβ RA-LTMR axon terminals associated with hair follicles, Meissner corpuscles, and Pacinian corpuscles. These axon protrusions reside within close proximity to axonal Piezo2, occasionally contain the channel, and often form adherens junctions with nearby non-neuronal cells. Our findings support a unified model for Aβ RA-LTMR activation in which axon protrusions anchor Aβ RA-LTMR axon terminals to specialized end organ cells, enabling mechanical stimuli to stretch the axon in hundreds to thousands of sites across an individual end organ and leading to activation of proximal Piezo2 channels and excitation of the neuron.
109
Citation5
0
Save
1

3D architecture and a bi-cellular mechanism of touch detection in mechanosensory corpuscle

Yury Nikolaev et al.Apr 6, 2023
Mechanosensory corpuscles detect transient touch and vibratory signals in the skin of vertebrates, enabling navigation, foraging, and precise manipulation of objects 1 . The corpuscle core comprises a terminal neurite of a mechanoreceptor afferent, the only known touch-sensing element within corpuscles, surrounded by terminal Schwann cells called lamellar cells (LCs) 2â€"4 . However, the precise corpuscular ultrastructure, and the role of LCs in touch detection are unknown. Here we used enhanced focused ion beam scanning electron microscopy and electron tomography to reveal the three-dimensional architecture of avian Meissner (Grandry) corpuscle 5 . We show that corpuscles contain a stack of LCs innervated by two afferents, which form large-area contacts with LCs. LCs form tether-like connections with the afferent membrane and contain dense core vesicles which release their content onto the afferent. Furthermore, by performing simultaneous electrophysiological recordings from both cell types, we show that mechanosensitive LCs use calcium influx to trigger action potential firing in the afferent and thus serve as physiological touch sensors in the skin. Our findings suggest a bi-cellular mechanism of touch detection, which comprises the afferent and LCs, likely enables corpuscles to encode the nuances of tactile stimuli.
0

Molecular and Cellular Mechanisms of Teneurin Signaling in Synaptic Partner Matching

Chuanyun Xu et al.Feb 23, 2024
SUMMARY In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionally conserved teneurins were the first identified transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurin’s functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching. HIGHLIGHTS In situ spatial proteomics reveal the first intracellular interactome of teneurins Ten-m signals via a RhoGAP and Rac1 GTPase to regulate synaptic partner matching Single-axon analyses reveal a stabilization-upon-contact model for partner matching Ten-m signaling promotes F-actin in axon branches contacting partner dendrites
0

Coordinating Receptor Expression and Wiring Specificity in Olfactory Receptor Neurons

Hongjie Li et al.Mar 31, 2019
The ultimate function of a neuron is determined by both its physiology and connectivity, but the transcriptional regulatory mechanisms that coordinate these two features are not well understood1-4. The Drosophila olfactory receptor neurons (ORNs) provide an excellent system to investigate this question. As in mammals5, each Drosophila ORN class is defined by the expression of a single olfactory receptor or a unique combination thereof, which determines their odor responses, and by the single glomerulus to which their axons target, which determines how sensory signals are represented in the brain6-10. In mammals, the coordination of olfactory receptor expression and wiring specificity is accomplished in part by olfactory receptors themselves regulating ORN wiring specificity11-13. However, Drosophila olfactory receptors do not instruct axon targeting6, 14, raising the question as to how receptor expression and wiring specificity are coordinated. Using single-cell RNA-sequencing and genetic analysis, we identified 33 transcriptomic clusters for fly ORNs. We unambiguously mapped 17 to glomerular classes, demonstrating that transcriptomic clusters correspond well with anatomically and physiologically defined ORN classes. We found that each ORN expresses ~150 transcription factors (TFs), and identified a master TF that regulates both olfactory receptor expression and wiring specificity. A second TF plays distinct roles, regulating only receptor expression in one class and only wiring in another. Thus, fly ORNs utilize diverse transcriptional strategies to coordinate physiology and connectivity.