ML
Martin Loose
Author with expertise in Bacterial Physiology and Genetics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(78% Open Access)
Cited by:
952
h-index:
17
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Spatial Regulators for Bacterial Cell Division Self-Organize into Surface Waves in Vitro

Martin Loose et al.May 8, 2008
+2
J
E
M
In the bacterium Escherichia coli , the Min proteins oscillate between the cell poles to select the cell center as division site. This dynamic pattern has been proposed to arise by self-organization of these proteins, and several models have suggested a reaction-diffusion type mechanism. Here, we found that the Min proteins spontaneously formed planar surface waves on a flat membrane in vitro. The formation and maintenance of these patterns, which extended for hundreds of micrometers, required adenosine 5′-triphosphate (ATP), and they persisted for hours. We present a reaction-diffusion model of the MinD and MinE dynamics that accounts for our experimental observations and also captures the in vivo oscillations.
0
Citation553
0
Save
0

The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns

Martin Loose et al.Dec 8, 2013
T
M
Bacterial cytokinesis is commonly initiated by the Z-ring, a cytoskeletal structure that assembles at the site of division. Its primary component is FtsZ, a tubulin superfamily GTPase, which is recruited to the membrane by the actin-related protein FtsA. Both proteins are required for the formation of the Z-ring, but if and how they influence each other’s assembly dynamics is not known. Here, we reconstituted FtsA-dependent recruitment of FtsZ polymers to supported membranes, where both proteins self-organize into complex patterns, such as fast-moving filament bundles and chirally rotating rings. Using fluorescence microscopy and biochemical perturbations, we found that these large-scale rearrangements of FtsZ emerge from its polymerization dynamics and a dual, antagonistic role of FtsA: recruitment of FtsZ filaments to the membrane and negative regulation of FtsZ organization. Our findings provide a model for the initial steps of bacterial cell division and illustrate how dynamic polymers can self-organize into large-scale structures. In bacteria, the tubulin-related GTPase FtsZ and the actin-related protein FtsA cooperate to form the Z-ring required for cytokinesis. Loose and Mitchison now show that FtsZ and FtsA can self-organize into dynamic structures in vitro, providing insights into the potential regulatory interplay of the two proteins.
0
Citation383
0
Save
1

PRC domain-containing proteins modulate FtsZ-based archaeal cell division

Phillip Nußbaum et al.Mar 28, 2023
+7
D
D
P
Dividing cells into two daughter cells is a complicated process that in bacteria and eukaryotes requires many proteins to work together. For archaea that divide via an FtsZ-based mechanism, only three proteins of the cell division machinery could so far be identified. These are two tubulin homologs, FtsZ1, FtsZ2 and the membrane anchor of FtsZ2, SepF. Here, we investigate additional archaeal cell division proteins that were identified by immunoprecipitation of SepF. These proteins comprise a single PRC-barrel domain and strictly co-occur with FtsZ. Two out of three PRC-barrel domain containing proteins found in Haloferax volcanii , CdpB1 and CdpB2 localize to the site of cell division in a SepF-dependent manner. Moreover, depletions and deletions cause severe cell division defects, generating drastically enlarged cells. Fluorescence microscopy of tagged FtsZ1, FtsZ2 and SepF in CdpB1/2 deletion strains revealed that the divisome is unusually disordered and not organized into a distinct ring-like structure at the cell centre. Biochemical analysis of CdpB homologs from different archaeal species showed that SepF interacts directly with CdpB1, which in turn binds to CdpB2, forming a tripartite complex. A crystal structure of CdpB1 and B2 recapitulated these interactions and suggested how these proteins might form filaments, possibly aligning SepF and therefore the FtsZ2 ring during cell division. In summary, we demonstrate that PRC domain proteins play essential roles in FtsZ based cell division in archaea.
1
Citation5
0
Save
0

ZapA stabilizes FtsZ filament bundles without slowing down treadmilling dynamics

Paulo Caldas et al.Mar 18, 2019
+3
D
M
P
Abstract For bacterial cell division, treadmilling filaments of FtsZ organize into a ring-like structure at the center of the cell. What governs the architecture and stability of this dynamic Z-ring is currently unknown, but FtsZ-associated proteins have been suggested to play an important role. Here, we used an in vitro reconstitution approach combined with fluorescence microscopy to study the influence of the well-conserved protein ZapA on the organization and dynamics of FtsZ filaments recruited to a supported membrane. We found that ZapA increases the spatial order and stabilizes the steady-state architecture of the FtsZ filament network in a highly cooperative manner. Despite its strong influence on their large-scale organization, ZapA binds only transiently to FtsZ filaments and has no effect on their treadmilling velocity. Together, our data explains how FtsZ-associated proteins can contribute to the precision and stability of the Z-ring without compromising treadmilling dynamics.
0
Citation4
0
Save
1

Chiral and nematic phases of flexible active filaments

Zuzana Dunajova et al.Dec 16, 2022
+7
P
B
Z
Abstract The emergence of large-scale order in self-organized systems relies on local interactions between individual components. During bacterial cell division, the tubulin-homolog FtsZ polymerizes into treadmilling filaments that further assemble into a cytoskeletal ring. Although minimal in vitro assays have shown the striking self-organization capacity of FtsZ filaments, such as dynamic chiral assemblies, how these large-scale structures emerge and relate to individual filament properties remains poorly understood. To understand this quantitatively, we combined minimal chiral active matter simulations with biochemical reconstitution experiments. Using STED and TIRF microscopy as well as high-speed AFM, we imaged the behavior of FtsZ filaments on different spatial scales. Simulations and experiments revealed that filament density and flexibility define the local and global order of the system: At intermediate densities, flexible filaments organize into chiral rings and polar bands, while an effectively nematic organization dominates for high filament densities and for mutant filaments with increased rigidity. Our predicted phase diagram captured these features quantitatively, demonstrating how filament flexibility, density and chirality cooperate with activity to give rise to a large repertoire of collective behaviors. These properties are likely important for the dynamic organization of soft chiral matter, including that of treadmilling FtsZ filaments during bacterial cell division.
1
Citation2
0
Save
27

In vitro reconstitution of divisome activation

Philipp Radler et al.Nov 8, 2021
+4
P
N
P
Abstract Bacterial cell division is coordinated by the Z-ring, a cytoskeletal structure of treadmilling filaments of FtsZ and their membrane anchors, FtsA and ZipA. For divisome maturation and initiation of constriction, the widely conserved actin-homolog FtsA plays a central role, as it links downstream cell division proteins in the membrane to the Z-ring in the cytoplasm. According to the current model, FtsA initiates cell constriction by switching from an inactive polymeric conformation to an active monomeric form, which then stabilizes the Z-ring and recruits downstream proteins such as FtsN. However, direct biochemical evidence for this mechanism is missing so far. Here, we used biochemical reconstitution experiments in combination with quantitative fluorescence microscopy to study the mechanism of divisome activation in vitro . By comparing the properties of wildtype FtsA and FtsA R286W, a gain-of-function mutant thought to mimic its active state, we found that active FtsA outperforms the wildtype protein in replicating FtsZ treadmilling dynamics, filament stabilization and FtsN recruitment. We could attribute these differences to a faster membrane exchange of FtsA R286W as well as its higher packing density below FtsZ filaments. Using FRET microscopy, we also show that binding of FtsN does not compete with, but promotes FtsA self-interaction. Together, our findings shed new light on the assembly and activation of the bacterial cell division machinery and the mechanism of how FtsA initiates cell constriction.
27
Citation1
0
Save
1

Stress-induced clustering of the UPR sensor IRE1α is driven by disordered regions within its ER lumenal domain

Paulina Kettel et al.Apr 1, 2023
+9
E
L
P
Abstract Upon accumulation of unfolded proteins at the endoplasmic reticulum (ER), IRE1 activates the unfolded protein response (UPR) to restore protein-folding homeostasis. During ER stress, IRE1’s ER lumenal domain (LD) drives its clustering on the ER membrane to initiate signaling. How IRE1’s LD assembles into high-order oligomers remains largely unknown. By in vitro reconstitution experiments we show that human IRE1α LD forms dynamic biomolecular condensates. IRE1α LD condensates were stabilized when IRE1α LD was tethered to model membranes and upon binding of unfolded polypeptide ligands. Molecular dynamics simulations suggested that weak multivalent interactions are involved in IRE1α LD assemblies. Mutagenesis showed that disordered regions in IRE1α LD control its clustering in vitro and in cells. Importantly, dysregulated clustering led to defects in IRE1α signaling. Our results reveal that membranes and unfolded polypeptides act as scaffolds to assemble dynamic IRE1α condensates into stable, signaling competent clusters.
1
Citation1
0
Save
0

Self-organization of mortal filaments and its role in bacterial division ring formation

Christian Vanhille-Campos et al.Aug 12, 2024
+3
P
K
C
Abstract Filaments in the cell commonly treadmill. Driven by energy consumption, they grow on one end while shrinking on the other, causing filaments to appear motile even though individual proteins remain static. This process is characteristic of cytoskeletal filaments and leads to collective filament self-organization. Here we show that treadmilling drives filament nematic ordering by dissolving misaligned filaments. Taking the bacterial FtsZ protein involved in cell division as an example, we show that this mechanism aligns FtsZ filaments in vitro and drives the organization of the division ring in living Bacillus subtilis cells. We find that ordering via local dissolution also allows the system to quickly respond to chemical and geometrical biases in the cell, enabling us to quantitatively explain the ring formation dynamics in vivo. Beyond FtsZ and other cytoskeletal filaments, our study identifies a mechanism for self-organization via constant birth and death of energy-consuming filaments.
0
Citation1
0
Save
1

Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts

Feyza Arslan et al.Apr 11, 2023
+2
J
É
F
Abstract Metazoan development relies on the formation and remodeling of cell-cell contacts. Dynamic reorganization of adhesion receptors and the actomyosin cell cortex in space and time play a central role in cell-cell contact formation and maturation. Yet, how this process is mechanistically achieved remains unclear. Here, by building a biomimetic assay composed of progenitor cells adhering to supported lipid bilayers functionalized with E-cadherin ectodomains, we show that cortical Actin flows, driven by the depletion of Myosin-2 at the cell contact center, mediate the dynamic reorganization of adhesion receptors and cell cortex at the contact. E-cadherin-dependent downregulation of the small GTPase RhoA at the forming contact leads to both a depletion of Myosin-2 and a decrease of F-actin at the contact center. This depletion of Myosin-2 causes centrifugal F-actin flows, leading to further accumulation of F-actin at the contact rim and the progressive redistribution of E-cadherin from the contact center to the rim. Eventually, this combination of actomyosin downregulation and flows at the contact determine the characteristic molecular organization, with E-cadherin and F-actin accumulating at the contact rim, where they are needed to mechanically link the contractile cortices of the adhering cells.
1
Citation1
0
Save
33

The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis

Alexander Johnson et al.Apr 27, 2021
+12
N
D
A
Abstract Clathrin-mediated endocytosis in plants is an essential process but the underlying mechanisms are poorly understood, not least because of the extreme intracellular turgor pressure acting against the formation of endocytic vesicles. In contrast to other models, plant endocytosis is independent of actin, indicating a mechanistically distinct solution. Here, by using biochemical and advanced microscopy approaches, we show that the plant-specific TPLATE complex acts outside of endocytic vesicles as a mediator of membrane bending. Cells with disrupted TPLATE fail to generate spherical vesicles, and in vitro biophysical assays identified protein domains with membrane bending capability. These results redefine the role of the TPLATE complex as a key component of the evolutionarily distinct mechanism mediating membrane bending against high turgor pressure to drive endocytosis in plant cells. One Sentence Summary While plant CME is actin independent, we identify that the evolutionarily ancient octameric TPLATE complex mediates membrane bending against high turgor pressure in plant clathrin-mediated endocytosis.
33
Citation1
0
Save
Load More