YL
Yuguo Li
Author with expertise in Airborne Transmission of Respiratory Viruses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(61% Open Access)
Cited by:
9,079
h-index:
89
/
i10-index:
367
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Respiratory virus shedding in exhaled breath and efficacy of face masks

Naichung Leung et al.Apr 3, 2020
+11
E
D
N
We identified seasonal human coronaviruses, influenza viruses and rhinoviruses in exhaled breath and coughs of children and adults with acute respiratory illness. Surgical face masks significantly reduced detection of influenza virus RNA in respiratory droplets and coronavirus RNA in aerosols, with a trend toward reduced detection of coronavirus RNA in respiratory droplets. Our results indicate that surgical face masks could prevent transmission of human coronaviruses and influenza viruses from symptomatic individuals. A study of 246 individuals with seasonal respiratory virus infections randomized to wear or not wear a surgical face mask showed that masks can significantly reduce detection of coronavirus and influenza virus in exhaled breath and may help interrupt virus transmission.
0

Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus

Ignatius Yu et al.Apr 21, 2004
+5
T
Y
I
BackgroundThere is uncertainty about the mode of transmission of the severe acute respiratory syndrome (SARS) virus. We analyzed the temporal and spatial distributions of cases in a large community outbreak of SARS in Hong Kong and examined the correlation of these data with the three-dimensional spread of a virus-laden aerosol plume that was modeled using studies of airflow dynamics.MethodsWe determined the distribution of the initial 187 cases of SARS in the Amoy Gardens housing complex in 2003 according to the date of onset and location of residence. We then studied the association between the location (building, floor, and direction the apartment unit faced) and the probability of infection using logistic regression. The spread of the airborne, virus-laden aerosols generated by the index patient was modeled with the use of airflow-dynamics studies, including studies performed with the use of computational fluid-dynamics and multizone modeling.ResultsThe curves of the epidemic suggested a common source of the outbreak. All but 5 patients lived in seven buildings (A to G), and the index patient and more than half the other patients with SARS (99 patients) lived in building E. Residents of the floors at the middle and upper levels in building E were at a significantly higher risk than residents on lower floors; this finding is consistent with a rising plume of contaminated warm air in the air shaft generated from a middle-level apartment unit. The risks for the different units matched the virus concentrations predicted with the use of multizone modeling. The distribution of risk in buildings B, C, and D corresponded well with the three-dimensional spread of virus-laden aerosols predicted with the use of computational fluid-dynamics modeling.ConclusionsAirborne spread of the virus appears to explain this large community outbreak of SARS, and future efforts at prevention and control must take into consideration the potential for airborne spread of this virus.
0

Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities

Lidia Morawska et al.Nov 26, 2008
+6
Z
G
L
A new expiratory droplet investigation system (EDIS) was used to conduct the most comprehensive program of study to date, of the dilution corrected droplet size distributions produced during different respiratory activities. Distinct physiological processes were responsible for specific size distribution modes. The majority of particles for all activities were produced in one or more modes, with diameters below 0.8 μm at average concentrations up to 0.75 cm−3. These particles occurred at varying concentrations, during all respiratory activities, including normal breathing. A second mode at 1.8 μm was produced during all activities, but at lower concentrations of up to 0.14 cm−3. Speech produced additional particles in modes near 3.5 and 5 μm. These two modes became most pronounced during sustained vocalization, producing average concentrations of 0.04 and 0.16 cm−3, respectively, suggesting that the aerosolization of secretions lubricating the vocal chords is a major source of droplets in terms of number. For the entire size range examined of 0.3–20 μm, average particle number concentrations produced during exhalation ranged from 0.1 cm−3 for breathing to 1.1 cm−3 for sustained vocalization. Non-equilibrium droplet evaporation was not detectable for particles between 0.5 and 20 μm, implying that evaporation to the equilibrium droplet size occurred within 0.8 s.
0
Paper
Citation1,025
0
Save
1

Characterization of expiration air jets and droplet size distributions immediately at the mouth opening

Christopher Chao et al.Nov 9, 2008
+8
L
M
C
Size distributions of expiratory droplets expelled during coughing and speaking and the velocities of the expiration air jets of healthy volunteers were measured. Droplet size was measured using the interferometric Mie imaging (IMI) technique while the particle image velocimetry (PIV) technique was used for measuring air velocity. These techniques allowed measurements in close proximity to the mouth and avoided air sampling losses. The average expiration air velocity was 11.7 m/s for coughing and 3.9 m/s for speaking. Under the experimental setting, evaporation and condensation effects had negligible impact on the measured droplet size. The geometric mean diameter of droplets from coughing was 13.5 μm and it was 16.0 μm for speaking (counting 1–100). The estimated total number of droplets expelled ranged from 947 to 2085 per cough and 112–6720 for speaking. The estimated droplet concentrations for coughing ranged from 2.4 to 5.2 cm−3 per cough and 0.004–0.223 cm−3 for speaking.
1
Paper
Citation996
0
Save
0

How far droplets can move in indoor environments ? revisiting the Wells evaporation?falling curve

X. Xie et al.May 30, 2007
+2
A
Y
X
Abstract Abstract A large number of infectious diseases are believed to be transmitted between people via large droplets and by airborne routes. An understanding of evaporation and dispersion of droplets and droplet nuclei is not only significant for developing effective engineering control methods for infectious diseases but also for exploring the basic transmission mechanisms of the infectious diseases. How far droplets can move is related to how far droplet-borne diseases can transmit. A simple physical model is developed and used here to investigate the evaporation and movement of droplets expelled during respiratory activities; in particular, the well-known Wells evaporation–falling curve of droplets is revisited considering the effect of relative humidity, air speed, and respiratory jets. Our simple model considers the movement of exhaled air, as well as the evaporation and movement of a single droplet. Exhaled air is treated as a steady-state non-isothermal (warm) jet horizontally issuing into stagnant surrounding air. A droplet is assumed to evaporate and move in this non-isothermal jet. Calculations are performed for both pure water droplets and droplets of sodium chloride (physiological saline) solution (0.9% w/v). We calculate the droplet lifetimes and how droplet size changes, as well as how far the droplets travel in different relative humidities. Our results indicate that a droplet's size predominately dictates its evaporation and movement after being expelled. The sizes of the largest droplets that would totally evaporate before falling 2 m away are determined under different conditions. The maximum horizontal distances that droplets can reach during different respiratory activities are also obtained. Our study is useful for developing effective prevention measures for controlling infectious diseases in hospitals and in the community at large.
0

Modality of human expired aerosol size distributions

Graham Johnson et al.Aug 7, 2011
+8
Z
L
G
An essential starting point when investigating the potential role of human expired aerosols in the transmission of disease is to gain a comprehensive knowledge of the expired aerosol generation process, including the aerosol size distribution, the various droplet production mechanisms involved and the corresponding sites of production within the respiratory tract. In order to approach this level of understanding we have integrated the results of two different investigative techniques spanning 3 decades of particle size from 700 nm to 1 mm, presenting a single composite size distribution, and identifying the most prominent modes in that distribution. We link these modes to specific sites of origin and mechanisms of production. The data for this were obtained using the Aerodynamic Particle Sizer (APS) covering the range 0.7≤d≤20 μm and Droplet Deposition Analysis (DDA) covering the range d≥20 μm. In the case of speech three distinct droplet size distribution modes were identified with count median diameters at 1.6, 2.5 and 145 μm. In the case of voluntary coughing the modes were located at 1.6, 1.7 and 123 μm. The modes are associated with three distinct processes: one occurring deep in the lower respiratory tract, another in the region of the larynx and a third in the upper respiratory tract including the oral cavity. The first of these, the Bronchiolar Fluid Film Burst (BFFB or B) mode contains droplets produced during normal breathing. The second, the Laryngeal (L) mode is most active during voicing and coughing. The third, the Oral (O) cavity mode is active during speech and coughing. The number of droplets and the volume of aerosol material associated with each mode of aerosol production during speech and coughing is presented. The size distribution is modeled as a tri-modal lognormal distribution dubbed the Bronchiolar/Laryngeal/Oral (B.L.O.) tri-modal model.
0
Paper
Citation602
0
Save
0

Exhaled droplets due to talking and coughing

Xiaojian Xie et al.Oct 7, 2009
L
H
Y
X
Respiratory infections can be spread via ‘contact’ with droplets from expiratory activities such as talking, coughing and sneezing, and also from aerosol-generating clinical procedures. Droplet sizes predominately determine the times they can remain airborne, the possibility of spread of infectious diseases and thus the strategies for controlling the infections. While significant inconsistencies exist between the existing measured data on respiratory droplets generated during expiratory activities, a food dye was used in the mouth during measurements of large droplets, which made the expiratory activities ‘unnatural’. We carried out a series of experiments using glass slides and a microscope as well as an aerosol spectrometer to measure the number and size of respiratory droplets produced from the mouth of healthy individuals during talking and coughing with and without a food dye. The total mass of respiratory droplets was measured using a mask, plastic bag with tissue and an electronic balance with a high precision. Considerable subject variability was observed and the average size of droplets captured using glass slides and microscope was about 50–100 µm. Smaller droplets were also detected by the aerosol spectrometer. More droplets seemed to be generated when a food dye was used.
0

Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant

Yuguo Li et al.Mar 13, 2021
+11
J
H
Y
Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person.
0
Citation462
0
Save
0

Indoor transmission of SARS‐CoV‐2

Hua Qian et al.Nov 1, 2020
+3
L
T
H
It is essential to understand where and how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted. Case reports were extracted from the local Municipal Health Commissions of 320 prefectural municipalities in China (not including Hubei Province). We identified all outbreaks involving three or more cases and reviewed the major characteristics of the enclosed spaces in which the outbreaks were reported and their associated indoor environmental aspects. Three hundred and eighteen outbreaks with three or more cases were identified, comprising a total of 1245 confirmed cases in 120 prefectural cities. Among the identified outbreaks, 53.8% involved three cases, 26.4% involved four cases, and only 1.6% involved ten or more cases. Home-based outbreaks were the dominant category (254 of 318 outbreaks; 79.9%), followed by transport-based outbreaks (108; 34.0%), and many outbreaks occurred in more than one category of venue. All identified outbreaks of three or more cases occurred in indoor environments, which confirm that sharing indoor spaces with one or more infected persons is a major SARS-CoV-2 infection risk.
0
Citation447
0
Save
0

Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong

Yuguo Li et al.Feb 28, 2005
+2
I
X
Y
Abstract Severe acute respiratory syndrome (SARS) is primarily transmitted by bio-aerosol droplets or direct personal contacts. This paper presents a detailed study of environmental evidence of possible airborne transmission in a hospital ward during the largest nosocomial SARS outbreak in Hong Kong in March 2003. Retrospective on-site inspections and measurements of the ventilation design and air distribution system were carried out on July 17, 2003. Limited on-site measurements of bio-aerosol dispersion were also carried out on July 22. Computational fluid dynamics simulations were performed to analyze the bio-aerosol dispersion in the hospital ward. We attempted to predict the air distribution during the time of measurement in July 2003 and the time of exposure in March 2003. The predicted bio-aerosol concentration distribution in the ward seemed to agree fairly well with the spatial infection pattern of SARS cases. Possible improvement to air distribution in the hospital ward was also considered.
0
Citation390
0
Save
Load More