ABSTRACT BACKGROUND Conversion of adenosine to inosine in RNA by ADAR enzymes occurs at thousands of sites in the human transcriptome, and is essential for healthy brain development. This ‘RNA editing’ process is dysregulated in many neuropsychiatric diseases, but is little understood at the level of individual neurons. METHODS We quantified RNA editing sites in full-length capture nuclear transcriptomes of 3055 neurons from six cortical regions of a neurotypical post-mortem female donor. Putative editing sites were intersected with sites in bulk human tissue transcriptomes including healthy and neuropsychiatric brain tissue, and sites identified in single nuclei from unrelated brain donors. Differential editing between cell types and cortical regions, and individual sites and genes therein, was quantified using linear models. Associations between gene expression and editing were also tested. RESULTS We identified 41,930 RNA editing sites with robust read coverage in at least ten neuronal nuclei. Most sites were located within Alu repeats in introns or 3’ UTRs, and approximately 80% were catalogued in published RNA editing databases. We identified 9285 putative novel RNA editing sites, 29% of which were also detectable neuronal transcriptomes from unrelated donors. Inhibitory neurons showed higher overall transcriptome editing than excitatory neurons. Among the strongest correlates of global editing rates were snoRNAs from the SNORD115 and SNORD116 cluster (15q11), known to modulate serotonin receptor processing and to colocalize with ADAR2. We identified 29 genes preferentially edited in excitatory neurons and 44 genes edited more heavily in inhibitory neurons including RBFOX1, its target genes and small nucleolar RNA-associated genes in the autism-associated Prader-Willi locus 15q11. These results provide cell-type and spatial context for 1730 and 910 sites that are also edited in the brains of schizophrenic and autistic patients respectively, and a reference for future studies of RNA editing in single brain cells from these cohorts. CONCLUSIONS RNA editing, including thousands of previously unreported sites, is robustly detectable in single neuronal nuclei, where gene editing differences are stronger between cell subtypes than between cortical regions. Insufficient editing of ASD-related genes in inhibitory neurons may manifest in the specific perturbation of these cells in autism.