EG
Eric Głowacki
Author with expertise in Conducting Polymer Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
4,675
h-index:
39
/
i10-index:
85
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Ultrathin and lightweight organic solar cells with high flexibility

Martin Kaltenbrunner et al.Apr 3, 2012
Application-specific requirements for future lighting, displays and photovoltaics will include large-area, low-weight and mechanical resilience for dual-purpose uses such as electronic skin, textiles and surface conforming foils. Here we demonstrate polymer-based photovoltaic devices on plastic foil substrates less than 2 μm thick, with equal power conversion efficiency to their glass-based counterparts. They can reversibly withstand extreme mechanical deformation and have unprecedented solar cell-specific weight. Instead of a single bend, we form a random network of folds within the device area. The processing methods are standard, so the same weight and flexibility should be achievable in light emitting diodes, capacitors and transistors to fully realize ultrathin organic electronics. These ultrathin organic solar cells are over ten times thinner, lighter and more flexible than any other solar cell of any technology to date. Organic solar cells are promising for technological applications, as they are lightweight and mechanically robust. This study presents flexible organic solar cells that are less than 2 μm thick, have very low specific weight and maintain their photovoltaic performance under repeated mechanical deformation.
8

A chronic photocapacitor implant for noninvasive neurostimulation with deep red light

Malin Silverå-Ejneby et al.Jul 2, 2020
Abstract Implantable clinical neuroelectronic devices are limited by a lack of reliable, safe, and minimally invasive methods to wirelessly modulate neural tissue. Here, we address this challenge by using organic electrolytic photocapacitors (OEPCs) to perform chronic peripheral nerve stimulation via transduction of tissue-penetrating deep-red light into electrical signals. The operating principle of the OEPC relies on efficient charge generation by nanoscale organic semiconductors comprising nontoxic commercial pigments. OEPCs integrated on an ultrathin cuff are implanted, and light impulses at wavelengths in the tissue transparency window are used to stimulate from outside of the body. Typical stimulation parameters involve irradiation with pulses of 50-1000 μs length (638 or 660 nm), capable of actuating the implant about 10 mm below the skin. We detail how to benchmark performance parameters of OEPCs first ex vivo , and in vivo using a rat sciatic nerve. Incorporation of a microfabricated zip-tie mechanism enabled stable, long-term nerve implantation of OEPC devices in rats, with sustained ability to non-invasively mediate neurostimulation over 100 days. OEPC devices introduce a high performance, ultralow volume (0.1 mm 3 ), biocompatible approach to wireless neuromodulation, with potential applicability to an array of clinical bioelectronics.
2

Photo-Electrochemical Stimulation of Neurons with Organic Donor-Acceptor Heterojunctions

Achilleas Savva et al.Feb 19, 2022
Abstract Recent advancements in light-responsive materials enabled the development of devices to artificially activate tissue with light, and show great potential for use in different types of therapy. Photo-stimulation based on organic semiconductors has recently attracted interest due to their unique set of properties such as biocompatibility, better mechanical match with human tissue, and strong absorption of light in the visible spectrum. Here we show the development of solution processed organic heterojunctions that are able to control the activity of primary neurons in vitro with light. The p-type polymer semiconductor PDCBT and the n-type polymer semiconductor ITIC (also known as non-fullerene acceptor) are simply spin coated on glass substrates forming a bilayer p-n junction with high photo-sensitivity in aqueous electrolytes. Photo-electrochemical measurements reveal that high photo-voltage and photo-current is produced, as a result of a charge transfer between the polymers and oxygen in the electrolyte. The biocompatibility of the proposed materials is addressed with live/dead assays on both primary mouse cortical neurons and human cell lines that are cultured on their surface. We have found that light of low intensity (i.e. 40 mW/cm 2 ) is absorbed, and converted into a cue that triggers action potential on primary cortical neurons directly cultured on glass/PDCBT/ITIC interfaces as proven by patch clamp measurements. The activation of neurons is most likely due to photochemical reactions at the polymer/electrolyte interface that result in hydrogen peroxide, which might lead to modulation of specific ion channels on neurons membrane. Photo-thermal effects are excluded with controlled patch clamp measurements on neurons cultured on plain glass and on photoresist thin films. The profound advantages of low intensity light stimulation, simplified fabrication, and wireless operation pave the way for the integration of these interfaces in multiplex bioelectronic devices for the development of novel light therapy concepts and powerful neuroscience research tools.
0

Improved Temporal and Spatial Focality of Non-invasive Deep-brain Stimulation using Multipolar Single-pulse Temporal Interference with Applications in Epilepsy

Emma Acerbo et al.Jan 14, 2024
Abstract Temporal Interference (TI) is an emerging method to non-invasively stimulate deep brain structures. This innovative technique is increasingly recognized for its potential applications in the treatment of various neurological disorders, including epilepsy, depression, and Alzheimer’s disease. However, several drawbacks to the TI method exist that we aim to improve upon. To begin, the applied electric field in the TI target is not much higher than what non-invasive transcranial alternating current stimulation (TACS) provides in the cortex. Additionally, the TI stimulation onset is dependent on the envelope of the amplitude modulated (AM) signal, where for example 1 Hz and 100 Hz envelopes have significantly different rise times to reach maximum envelope amplitude – unlike square biphasic pulses. This limitation in turn prevents classic TI, from applying bursts of pulses. Finally, the electric field intensity of TI cannot be increased or decreased at the target without dramatically altering the spatial profile of the stimulation focus. In the work presented here, we efficiently address all three of these limitations. First, we performed two-photon calcium imaging to show that individual neurons selectively respond to the TI envelope frequency, providing evidence that TI modulates neural activity with temporal specificity. This marks a significant advancement, representing the first empirical demonstration of neuronal activation at the Δf frequency within the context of TI and in an imaging modality. Subsequently, we compared the AM signals of TI with phase-shift keying (PSK) modulated signals to highlight the superior effectiveness of noninvasive pulses in contrast to the traditional TI method, particularly in inducing epileptic activity (after-discharges) in mice. We also added a multipolar configuration to create a significant increase in the electric field at the target without significantly altering the spatial profile and applied Fourier components to replicate classic biphasic bursts of square pulses - all transcranially, without the use of penetrating electrodes. These innovations aim to enhance the precision and efficacy of TI stimulation, to advance its application in neurological research and therapy. Key Points / Highlights Non-invasive temporal interference stimulation modulates the activity of individual neurons at the envelope frequency. A non-invasive multi-pulse TI stimulation paradigm improves both temporal and spatial focality in the deep target neural tissue when compared to traditional continuous wave (amplitude-modulated) TI stimulation. Pulse TI paradigms can stimulate deep neural targets with reduced amplitude of the topical high-frequency stimulation, decreasing off-target stimulation when compared to continuous wave TI patterns. As a consequence, pulse TI stimulation reduces the risk of undesired side effects such as high-frequency conduction block in off-target tissues or cortical areas. Both temporal and spatial focality of the TI stimulation pattern positively correlate with the efficacy of the stimulation to induce seizures in the mouse hippocampus.
0
Citation3
0
Save
Load More