LC
Lydia Castelli
Author with expertise in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
3
h-index:
21
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

RAN translation of C9orf72-related dipeptide repeat proteins in zebrafish recapitulates hallmarks of amyotrophic lateral sclerosis and identifies hypothermia as a therapeutic strategy

David Burrows et al.Jan 20, 2024
+5
O
A
D
ABSTRACT Objective Hexanucleotide repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). A large body of evidence implicates DPRs as one of the main drivers of neuronal injury in cell and animal models. Methods A pure repeat-associated non-AUG (RAN) translation zebrafish model of C9orf72-ALS/FTD was generated. Embryonic and adult transgenic zebrafish lysates were investigated for the presence of RAN-translated DPR species and adult-onset motor deficits. Using C9orf72 cell models as well as embryonic C9orf72-ALS/FTD zebrafish, hypothermic-therapeutic temperature management (TTM) was explored as a potential therapeutic option for C9orf72-ALS/FTD. Results Here we describe a pure RAN translation zebrafish model of C9orf72-ALS/FTD that exhibits significant RAN-translated DPR pathology and progressive motor decline. We further demonstrate that hypothermic-TTM results in a profound reduction in DPR species in C9orf72-ALS/FTD cell models as well as embryonic C9orf72-ALS/FTD zebrafish. Interpretation The transgenic model detailed in this paper provides a medium throughput in vivo research tool to further investigate the role of RAN-translation in C9orf72-ALS/FTD and further understand the mechanisms that underpin neuroprotective strategies. Hypothermic-TTM presents a viable therapeutic avenue to explore in the context of C9orf72-ALS/FTD.
0
Citation1
0
Save
1

The master energy homeostasis regulator PGC-1α couples transcriptional co-activation and mRNA nuclear export

Simeon Mihaylov et al.Sep 19, 2021
+10
Y
L
S
Abstract PGC-1α plays a central role in maintaining the mitochondrial and energy metabolism homeostasis, linking external stimuli to the transcriptional co-activation of genes involved in adaptive and age-related pathways. The carboxyl-terminus encodes a serine/arginine-rich (RS) region and a putative RNA recognition motif, however potential RNA-processing role(s) have remained elusive for the past 20 years. Here, we show that the RS domain of human PGC-1α directly interacts with RNA and the nuclear RNA export factor NXF1. Inducible depletion of endogenous PGC-1α and expression of RNAi-resistant RS-deleted PGC-1α further demonstrate that the RNA-binding activity is required for nuclear export of co-activated transcripts and mitochondrial homeostasis. Moreover, a quantitative proteomics approach confirmed PGC-1α-dependent RNA transport and mitochondrial-related functions, identifying also novel mRNA nuclear export targets in age-related telomere maintenance. Discovering a novel function for a major cellular homeostasis regulator provides new directions to further elucidate the roles of PGC-1α in gene expression, metabolic disorders, ageing and neurodegenerative diseases.
1
Citation1
0
Save
28

A cell-penetrant peptide blockingC9ORF72-repeat RNA nuclear export suppresses neurodegeneration

Lydia Castelli et al.May 23, 2021
+17
A
I
L
Abstract Hexanucleotide repeat expansions in C9ORF72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), a spectrum of incurable debilitating neurodegenerative diseases. Here, we report a novel ALS/FTD drug concept with in vivo and in vitro therapeutic activity in preclinical models of C9ORF72-ALS/FTD. Our data demonstrate that supplementation or oral administration of a cell-penetrant peptide, which competes with the SRSF1:NXF1 interaction, confers neuroprotection by inhibiting the nuclear export of pathological C9ORF72 -repeat transcripts in various models of disease including primary neurons, patient-derived motor neurons and Drosophila . Our drug-like rationale for disrupting the nuclear export of microsatellite repeat transcripts in neurological disorders provides a promising alternative to conventional small molecule inhibitors often limited by poor blood-brain barrier penetrance.
28
Citation1
0
Save
0

GRASPS: a simple-to-operate translatome technology reveals omics-hidden disease-associated pathways in TDP-43-related amyotrophic lateral sclerosis

Ya-Hui Lin et al.Mar 8, 2024
+16
M
C
Y
Abstract Transcriptomes and translatomes measure genome-wide levels of total and ribosome-associated RNAs. A few hundred translatomes were reported over >250,000 transcriptomes highlighting the challenges of identifying translating RNAs. Here, we used a human isogenic inducible model of TDP-43-linked amyotrophic lateral sclerosis, which exhibits altered expression of thousands of transcripts, as a paradigm for the direct comparison of whole-cell, cytoplasmic and translating RNAs, showing broad uncoupling and poor correlation between disease-altered transcripts. Moreover, based on precipitation of endogenous ribosomes, we developed GRASPS (Genome-wide RNA Analysis of Stalled Protein Synthesis), a simple-to-operate translatome technology. Remarkably, GRASPS identified three times more differentially-expressed transcripts with higher fold changes and statistical significance, providing unprecedented opportunities for data modeling at stringent filtering and discovery of previously omics-missed disease-relevant pathways, which functionally map on dense gene regulatory networks of protein-protein interactions. Based on its simplicity and robustness, GRASPS is widely applicable across disciplines in the biotechnologies and biomedical sciences.
0

Safety and efficacy of C9ORF72-repeat RNA nuclear export inhibition in amyotrophic lateral sclerosis

Lydia Castelli et al.Apr 12, 2021
+13
C
L
L
Abstract Background Loss of motor neurons in amyotrophic lateral sclerosis (ALS) leads to progressive paralysis and death. Dysregulation of thousands of RNA molecules with roles in multiple cellular pathways hinders the identification of ALS-causing alterations over downstream changes secondary to the neurodegenerative process. How many and which of these pathological gene expression changes require therapeutic normalisation remains a fundamental question. Methods Here, we investigated genome-wide RNA changes in C9ORF72-ALS patient-derived neurons and Drosophila , as well as upon neuroprotection taking advantage of our gene therapy approach which specifically inhibits the SRSF1-dependent nuclear export of pathological C9ORF72 -repeat transcripts. This is a critical study to evaluate (i) the overall safety and efficacy of the partial depletion of SRSF1, a member of a protein family involved itself in gene expression, and (ii) a unique opportunity to identify neuroprotective RNA changes. Results Our study demonstrates that manipulation of 362 transcripts out of 2,257 pathological changes in C9ORF72-ALS patient-derived neurons is sufficient to confer neuroprotection upon partial depletion of SRSF1. In particular, expression of 90 disease-altered transcripts is fully reverted upon neuroprotection leading to the characterisation of a human C9ORF72-ALS disease-modifying gene expression signature. These findings were further investigated in vivo in diseased and neuroprotected Drosophila transcriptomes, highlighting a list of 21 neuroprotective changes conserved with 16 human orthologues in patient-derived neurons. We also functionally validated the high therapeutic potential of one of these disease-modifying transcripts, demonstrating that inhibition of ALS-upregulated human KCNN1-3 ( Drosophila SK) voltage-gated potassium channel orthologs mitigates degeneration of human motor neurons as well as Drosophila motor deficits. Conclusions Strikingly, manipulating the expression levels of a small proportion of RNAs is sufficient to induce a therapeutic effect, further indicating that the SRSF1-targeted gene therapy approach is safe in the above preclinical models as it does not disrupt globally gene expression. The efficacy of this intervention is also validated at genome-wide level with therapeutically-induced RNA changes involved in the vast majority of biological processes affected in C9ORF72-ALS. Finally, the identification of a characteristic signature with key RNA changes modified in both the disease state and upon neuroprotection also provides potential new therapeutic targets and biomarkers.